ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Overall

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 4, 2024
Revised April 11, 2024
Accepted April 20, 2023
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Cited

이산화티타늄 전기유변 유체의 수직 응력과 정전기 분극 모델에 의한 전산모사

The Normal Stress of TiO2 Electrorheological Fluid and Its Model Prediction

전남대학교 화학공학부
School of Chemical Engineering, Chonnam National University
youngdae@jnu.ac.kr
Korean Chemical Engineering Research, August 2024, 62(3), 269-273(5), https://doi.org/10.9713/kcer.2024.62.3.269 Epub 1 August 2024
downloadDownload PDF

Abstract

TiO2 전기유변 유체의 수직 응력을 실험적으로 측정하고 전산모사도 수행하였다. 전기장 하에서 수직 응력은 입자

사이의 수직 방향의 정전기 인력에 의해 음수 값을 보였고, 수직 응력의 절대값은 전기장의 증가에 따라 급격하게 상

승하였다. 전단 응력에서처럼 수직 항복 응력도 E2에 비례하는 특성을 보여, 수직 응력을 전기유변 현상의 평가에 활

용할 수 있음을 나타냈다. 수직 응력의 거동을 이해하기 위해 수행한 전산모사는 수직 응력이 실험 결과와 정성적으로

잘 일치함을 보여 주었다. 또한 전기장 하에서는 전단 속도가 증가함에 따라 수직 응력의 절대값이 줄어드는 경향은

전단 속도에 따른 입자들의 구조 변화로 발생하는 것으로 나타났다.

The normal stress of TiO2 ER fluid under an electric field showed negative values due to the electrostatic

attraction force in the normal direction between particles and the absolute value increased dramatically with electric field

strengths. The normal yield stress exhibited E2 dependence similar to the dynamic yield stress, indicating that normal

stress can be utilized for evaluating the ER effect. Numerical simulation demonstrated good qualitative agreement with

the experimental data and suggested that the decrease in the absolute value of normal stress with increasing shear rates

was attributed to the rearrangement of particle configurations under shear.

References

1. Winslow, W. M., “Induced Fibration of Suspensions,” J. Appl.
Phys., 20, 1137-1140(1949).
2. Jekal, S., Chu, M., Kim, Y., Noh, J., Kim, J., Kim, H., Oh, W.,
Otgonbayar, Z. and Yoon, C., “A Study on Enhanced Electrorheological
Performance of Plate-like Materials via Percolation
Gel-like Effect,” Gels, 9(11), 891-903(2023).
3. Dong, Y., Kim, H. and Choi, H., “Conducting Polymer-based
Electro-responsive Smart Suspensions,” Chemical Papers, 75(10),
5009-5034(2021).
4. Deinega, Y. F. and Vinogradov, G. V., “Electric Fields in Rheology
of Disperse System,” Rheol Acta., 23, 636-651(1984).
5. Shulman, Z. P., Gorodkin, R. G. and Korobko, E. V., “The Electrorheological
Effects and Its Possible Uses,” J. Non-Newt. Fluid
Mech., 8, 29-41(1981).
6. Xue, Bing., Zhao, X. and Yin, J., “Electrorheological Effect of
Self-crosslinked Polymerized Ionic Liquids Containing Different
Types of ion Spacers,” Polymer, 288, 126455(2023).
7. Han, Y. M., “2-DOF Force-reflecting Control of ER Haptic
Interface Featuring a Spherical Joint,” Trans. Korean Soc. Noise
Vib. En’g., 33(6), 691-698(2023).
8. Block, H. and Kelly, J. P., “Electro-rheology,” J. Phys. D: Appl.
Phys., 21, 1661-1677(1988).
9. Kim, Y. D. and Yoon, D. J., “Electrorheological Fluids of Polypyrrole-
tin Oxide Nanocomposite Particles,” Korea-Australia
Rheol. J., 28(4), 275-279(2016).
10. Filisko, F. E. and Razdilowski, L. H., “An intrinsic Mechanism
for the Activity of Aumino-silicate Based Electrorheological
Materials,” J. Rheo., 34, 539-552(1990).
11. Otsubo, Y., Sakine, M. and Katayama, S., “Effect of Adsorbed
Water on the Electrorheology of Silica Suspensions,” J. Coll.
Interface Sci., 150, 324-330(1992).
12. Kim, Y. D. and Klingenberg, D. J., “Two roles of Nonionic Surfactants
on the Electrorheological Response,” J. Coll. Interface
Sci., 168, 568-578(1996).
13. Dong, Y. Z., Kwon, S. H., Choi, H. J., Puthiaraj, P., and Ahn, W.,
“Electroresponsive Polymer-Inorganic Semiconducting Composite
(MCTP-Fe3O4) Particles and their Electrorheology,” ACS Omega,
3, 17246-17253(2018).
14. Noh, J., Yoon, C. M. and Jang, J., “Enhanced Electrorheological
Activity of Polyaniline Coated Mesoporous Silica with High Aspect
Ratio,” J. Coll. Interface Sci., 470, 237-244(2016).
15. Lengalova, A., Pavlinek, B., Saha, P., Stejskal, J. and Quadrat,
O., “Electrorheology of Polyaniline-coated Inorganic Particles in
Silicone Oil,” J. Coll. Interface Sci., 258, 174-178(2003).
16. Kim, Y. D. and Kim, J. H., “Synthesis of Polypyrrole-polycaprolactone
Composites by Emusion Polymerization and the Electrorheological
Behavior of their Suspensions,” Colloid Polym. Sci.,
286, 631-637(2008).
17. Kim, Y. D. and Kim, J. H., “Synthesis of Polypyrrole-SBS Composites
and the Particle Size Effect on the Electroheological
Properties of Their Suspensions,” Synthetic Metals, 158, 479-483
(2008).
18. Stangroom, J. E., “Basic Considerations in Flowing Electrorheologcal
Fluids,” J. Stat. Phys., 64, 1059-1072(1991).
19. Kim, Y. D., “A Surfactant Bridge Model for the Nonlinear Electrorheological
Effects of Surfactant Activated ER Suspensions,”
J. Coll. Interface Sci., 236, 225-232(2001).
20. Klass, D. L. and Martinek, T. W., “Electro-viscous Fluids,” J. Appl.
Phys. 38, 67-75(1967).
21. Klingenberg, D. J., Swol, F. and Zukoski, C. F., “Small Shear
Rate Response of Electrorheological Suspensions I,” J. Chem.
Phys., 94, 6160-6169(1991).
22. Davis, L. C. and Ginder, J. M., “Electrostatic Forces in Electrorheological
Fluids,” Progress in Electrorheology, ed. by K.O.
Havelka and F.E. Filisko, New York, Plenum, 107-111(1995).
23. Foulc, J. N., Atten, P. and Felici, N., “Macroscopic Model of
Interaction between Particles in an Electrotheological Fluid,” J.
Electrostatics, 33, 103-112(1994).
24. Parthasarathy, M. and Klingenberg, D. J., “Electrorheology: Mechanisms
and Models,” Mater. Sci. Eng., R17, 57-103(1996).
25. Kim, Y. D., “Simulation of Bi-dispersed Electrorheological Fluids
of Different Particle Sizes y the Extended Maxwell-Wagner
Polarization Model,” Korean Chem. Eng. Res., 60, 613-619(2022).
26. Kim, Y. D., “Simulation of Electrorheological Fluids by the
Extended Maxwell-Wagner Polarization Model with Onsager
theory,” Korean Chem. Eng. Res., 58, 480-485(2020).
27. Wang, Z., Xuan, S., Jiang, W., and Gong, X., “The Normal Stress
of an Electrorheological fluid in Compression Mode,” RSC
Advances, 7, 25855-25869(2017).
28. Marshall, L. and Zukoski, C. F., “Effects of Electric Fields on
the Rheology of Non-aqueous Concentrated Suspensions,” J.
Chem. Soc., 85, 2785-2795(1989).
29. Kim, Y. D., Choi, G. J., Sim, S. J. and Cho, Y. S., “Electrorheological
Suspensions of Two Polarizable Particles,” Korean J.
Chem. Eng., 16, 338-342(1999).
30. Onsagar, L., “Deviation from Ohm’s Law in Weak Electrolytes,”
J. Chem. Phys., 2, 599-615(1934).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로