References
1. Youn, J., Kim, M., Kim K., Kim, M., Jung, T., Go, K., Jeon, S.and Kim W., “Highly Efficient Co-added Ni/CeO2 Catalyst forco-production of Hydrogen, and Carbon Nanotubes by MethaneDecomposition,” Fuel Process. Technol., 263, 108130(2024).2. Kim, M., Park, S., Kim, K., Kim, W., Nam, S., Go, K. and Jeon,S., “Fabrication of Carbon Nanotube with High Purity and Crystallinityby Methane Decomposition over Ceria-supported Catalysts,”J. lnd. Eng. Chem., 119, 315-326(2023).3. Li, Y., Zhong, B., Tang, X., Xu, Y. and Shen, W., “HydrogenProduction from Methane Decomposition over Ni/CeO2 Catalysts,”Catal. Commun., 7(6), 380-386(2006).4. Ay, H. and Üner, D., “Dry Reforming of Methane over CeO2Supported Ni, Co and Ni–Co Catalysts,” Appl. Catal. B: Environ,179, 128-138(2015).5. Matsumura, Y. and Nakamori, T., “Steam Reforming of Methaneover Nickel Catalysts at Low Reaction Temperature,” Appl.Catal. A: Gen., 258(1), 107-114(2004).6. Wang, D., Littlewood, P., Marks, T., Stair, P. and Weitz, E., “Cokingcan Enhance Product Yields in the Dry Reforming of Methane,”ACS Catalysis, 12(14), 8352-8362(2022).7. Guharoy, U., Reina, T., Liu, J., Sun, Q., Gu, S. and Cai, Qiong.,“A Theoretical Overview on the Prevention of Coking in DryReforming of Methane Using Non-precious Transition MetalCatalysts,” J. CO2 Util., 53, 101728(2021).8. Wang, Y., Zhang, Y., Zhao, S., Zhu, J., Jin, L. and Hu, H., “Preparationof Bimetallic Catalysts Ni-Co and Ni-Fe Supported on ActivatedCarbon for Methane Decomposition,” Carbon Resour. Convers.,3, 190-197(2020).9. Rategarpanah, A., Meshkani, F., Wang, Y., Arandiyan, H. andRezaei, M., “Thermocatalytic Conversion of Methane to HighlyPure Hydrogen over Ni–Cu/MgO·Al2O3 Catalysts: Influence ofNoble Metals (Pt and Pd) on the Catalytic Activity and Stability,”Energy Convers. Manag., 166, 268-280(2018).10. Tezel, E., Figen, H. E. and Baykara, S. Z., “Hydrogen Productionby Methane Decomposition Using Bimetallic Ni–Fe Catalysts,”Int. J. Hydrogen Energy, 44(20), 9930-9940(2019).11. Gao, B., Wang, I.-W., Ren, L. and Hu, J., “Catalytic MethaneDecomposition over Bimetallic Transition Metals Supported onComposite Aerogel,” Energy Fuels, 33(9), 9099-9106(2019).12. Bonet, F., Grugeon, S., Dupont, L., Urbina, R., Guery, C. andTarascon, J., “Synthesis and Characterization of Bimetallic Ni–Cu Particles,” J. Solid State Chem., 172(1), 111-115(2003).13. Murtaza A. Khan., Mohamed S. Challiwala., Anuj V. Parakash.,Nimir O. Elbashir., “Conceptual Modeling of a Reactor Bed of aNickel-copper Bi-metallic Catalyst for Dry Reforming of Methane,”Chem. Eng. Sci., 267(5), 118315(2023).14. Lin, S., Wang, J., Mi, Y., Yang, S., Wang, Z., Liu, W., Wu, D. andPeng, H., “Trifunctional Strategy for the Design and Synthesisof a Ni-CeO2@SiO2 Catalyst with Remarkable Low-temperatureSintering and Coking Resistance for Methane Dry Reforming,”Chin. J. Catal., 42(10), 1808-1820(2021).15. Zhang, C., Li, S., Wu, G. and Gong, J., “Synthesis of Stable Ni-CeO2 Catalysts via Ball-milling for Ethanol Steam Reforming,”Catalysis Today, 233(15), 53-60(2014).16. Cai, J., Jiang, F. and Liu, X., “Exploring Pretreatment Effects inCo/SiO2 Fischer-Tropsch Catalysts: Different Oxidizing GasesApplied to Oxidation-reduction Process,” Appl. Catal. B: Environ.,210, 1-13(2017).17. Tsiotsias, A. I., Charisiou, N. D., Yentekakis, I. V. and Goula, M.A., “Bimetallic Ni-Based Catalysts for CO2 Methanation: AReview,” MDPI. Nanomaterials., 11(1), 28(2020).18. Luisetto, I., Tuti, S. and Bartolomeo, E. D., “Co and Ni Supported onCeO2 as Selective Bimetallic Catalyst for Dry Reforming ofMethane,” Int. J. Hydrogen Energy., 37(21), 15992-15999(2012).19. Kang, W., Guo, H. and Varma, A., “Noble-metal-free NiCu/CeO2Catalysts for H2 Generation from Hydrous Hydrazine,” Appl.Catal. B: Environ, 249(15), 54-62(2019).20. Wang, Y., Wang, H., Dam, A., Xiao, L., Qi, Y., Niu, J., Yang, J.,Zhu, Y., Holmen, A. and Chen, De., “Understanding Effects ofNi Particle Size on Steam Methane Reforming Activity by CombinedExperimental and Theoretical Analysis,” Catalysis Today,355(15), 139-147(2020).21. Moliner, R., Echegoyen, Y., Suelves, I., Lázaro, M. and Palacios,J., “Ni–Mg and Ni–Cu–Mg Catalysts for SimultaneousProduction of Hydrogen and Carbon Nanofibers: The Effect ofCalcination Temperature,” Int. J. Hydrogen Energy, 33, 1719-1728(2008).22. Schoemaker, S. E., Bismeijer, S., Wezendonk, D. F. L., Meeldijk,J. D., Welling, T. A. J. and de Jongh, P. E., “Balancing Act:Influence of Cu Content in NiCu/C Catalysts for Methane Decomposition,”Mater. Adv., 5, 4251-4261(2024).23. Kim, M.-J., Lee, S.-J., Ryu, I.-S., Jeon, M.-W., Moon, S.-H.,Roh, H.-S. and Jeon, S. G., “Catalytic Decomposition of N-Oover Cobalt-based Spinel Oxides: The Role of Additives,” Mol.Catal., 442, 202-207(2017).24. Ping, D., Wang, C., Dong, X. and Dong, Y., “Co-production ofHydrogen and Carbon Nanotubes on Nickel Foam via MethaneCatalytic Decomposition,” Appl. Surf. Sci., 369(30), 299-307(2016).25. Abdullahi, I., Sakulchaicharoen, N. and Herrera, J. E., “A MechanisticStudy on the Growth of Multi-walled Carbon Nanotubesby Methane Decomposition over Nickel–alumina Catalyst,” Diam.Relat. Mater., 23, 76-82(2012).26. Yousefi, A. T., Tanaka, H., Bagheri, S., Elfghi, F. M., Rusop, M.M. and Ikeda, S., “Vectorial Crystal Growth of Oriented VerticallyAligned Carbon Nanotubes Using Statistical Analysis,” Cryst.Growth Des., 15(7), 3457-3463(2015).27. Christensen, A. N. and McDonald, I. R., “Crystal Growth andSurface Structure. Part I,” J. Cryst. Growth, 22, 79-85(1974).28. Gu, S. and Reina, T. R., “A Review of Advanced Catalyst Developmentfor Fischer–Tropsch Synthesis of Hydrocarbons from BiomassDerived Syn-gas,” Catal. Sci. Technol., 4, 1234-1245(2020).29. Schaper, A. K., Hou, H., Greiner, A. and Phillipp, F., “The Roleof Iron Carbide in Multiwalled Carbon Nanotube Growth,” J.Catal., 222(1), 250-254(2004).