ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2025 KICHE. All rights reserved

Overall

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 7, 2024
Revised October 23, 2024
Accepted October 29, 2024
Available online February 1, 2025
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Cited

수소 및 고부가 탄소 동시 생산을 위한 Ni 기반 이중 금속 담지 촉매의 메탄 분해

Methane Decomposition over Nickel Based Bimetallic Catalyst for co-production of Hydrogen and High-value Carbon Materials

한국에너지기술연구원 1충남대학교 에너지과학기술대학원
Korea Insititute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea 1Graduate School of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
kyubock.lee@cnu.ac.kr, sgjeon@kier.re.kr
Korean Chemical Engineering Research, February 2025, 63(1), 123-130(8)
https://doi.org/10.9713/kcer.2025.63.1.123
downloadDownload PDF

Abstract

본 연구에서 이산화탄소를 생성하지 않고 수소와 탄소를 동시 생산하는 메탄 분해 반응에서 Ni 기반 촉매에 첨가된

전이 금속이 반응 활성 및 내구성에 미치는 영향에 대해 알아보았다. 이중 금속 촉매는 침전법으로 합성된 CeO2에 Ni

및 다른 전이 금속(Fe, Co, Cu)을 습식함침 하는 방식으로 제조 하였다. 제조된 촉매는 열중량 분석기와 튜브 퍼니스

반응기를 사용하여 반응성을 평가하였으며, 촉매 성능 및 내구성은 Ni에 Cu를 첨가한 Ni-Cu/CeO2 촉매에서 가장 높은

결과를 얻었다. 이러한 활성 증가의 원인을 조사하기 위하여 XRD, BET, H2-TPR과 같은 촉매 특성 분석들을 진행하

였다. 또한, 이중 금속 촉매를 사용하는 경우에 첨가하는 금속에 따라 촉매 표면에 생성되는 결정성 탄소의 특성들을

확인하였다.

This study investigated the catalytic activity and durability of bimetallic catalysts for the methane

decomposition reaction, which produces hydrogen and carbon materials without emitting carbon dioxide. The

bimetallic catalysts were synthesized by the wet impregnation of Ni and other transition metals (Fe, Co, Cu) onto

CeO2, which was prepared via the precipitation method. The performance of the prepared catalysts was evaluated

using thermogravimetric analysis (TGA) and a tubular furnace reactor (TFR). Among the bimetallic catalysts, Ni-Cu/

CeO2 catalysts exhibited the highest performance in terms of activity and durability. The addition of Cu to the Ni-Cu/

CeO2 catalyst resulted in improved catalytic activity and durability. To determine the synergistic effects of bimetallic

metals on the catalytic activity of the CDM reaction, the catalysts were analyzed using XRD, BET, and TPR. Furthermore,

the characteristics of crystalline carbon formed on the surface of the bimetallic catalysts were influenced by the type

of transition metal added.

References

1. Youn, J., Kim, M., Kim K., Kim, M., Jung, T., Go, K., Jeon, S.and Kim W., “Highly Efficient Co-added Ni/CeO2 Catalyst forco-production of Hydrogen, and Carbon Nanotubes by MethaneDecomposition,” Fuel Process. Technol., 263, 108130(2024).2. Kim, M., Park, S., Kim, K., Kim, W., Nam, S., Go, K. and Jeon,S., “Fabrication of Carbon Nanotube with High Purity and Crystallinityby Methane Decomposition over Ceria-supported Catalysts,”J. lnd. Eng. Chem., 119, 315-326(2023).3. Li, Y., Zhong, B., Tang, X., Xu, Y. and Shen, W., “HydrogenProduction from Methane Decomposition over Ni/CeO2 Catalysts,”Catal. Commun., 7(6), 380-386(2006).4. Ay, H. and Üner, D., “Dry Reforming of Methane over CeO2Supported Ni, Co and Ni–Co Catalysts,” Appl. Catal. B: Environ,179, 128-138(2015).5. Matsumura, Y. and Nakamori, T., “Steam Reforming of Methaneover Nickel Catalysts at Low Reaction Temperature,” Appl.Catal. A: Gen., 258(1), 107-114(2004).6. Wang, D., Littlewood, P., Marks, T., Stair, P. and Weitz, E., “Cokingcan Enhance Product Yields in the Dry Reforming of Methane,”ACS Catalysis, 12(14), 8352-8362(2022).7. Guharoy, U., Reina, T., Liu, J., Sun, Q., Gu, S. and Cai, Qiong.,“A Theoretical Overview on the Prevention of Coking in DryReforming of Methane Using Non-precious Transition MetalCatalysts,” J. CO2 Util., 53, 101728(2021).8. Wang, Y., Zhang, Y., Zhao, S., Zhu, J., Jin, L. and Hu, H., “Preparationof Bimetallic Catalysts Ni-Co and Ni-Fe Supported on ActivatedCarbon for Methane Decomposition,” Carbon Resour. Convers.,3, 190-197(2020).9. Rategarpanah, A., Meshkani, F., Wang, Y., Arandiyan, H. andRezaei, M., “Thermocatalytic Conversion of Methane to HighlyPure Hydrogen over Ni–Cu/MgO·Al2O3 Catalysts: Influence ofNoble Metals (Pt and Pd) on the Catalytic Activity and Stability,”Energy Convers. Manag., 166, 268-280(2018).10. Tezel, E., Figen, H. E. and Baykara, S. Z., “Hydrogen Productionby Methane Decomposition Using Bimetallic Ni–Fe Catalysts,”Int. J. Hydrogen Energy, 44(20), 9930-9940(2019).11. Gao, B., Wang, I.-W., Ren, L. and Hu, J., “Catalytic MethaneDecomposition over Bimetallic Transition Metals Supported onComposite Aerogel,” Energy Fuels, 33(9), 9099-9106(2019).12. Bonet, F., Grugeon, S., Dupont, L., Urbina, R., Guery, C. andTarascon, J., “Synthesis and Characterization of Bimetallic Ni–Cu Particles,” J. Solid State Chem., 172(1), 111-115(2003).13. Murtaza A. Khan., Mohamed S. Challiwala., Anuj V. Parakash.,Nimir O. Elbashir., “Conceptual Modeling of a Reactor Bed of aNickel-copper Bi-metallic Catalyst for Dry Reforming of Methane,”Chem. Eng. Sci., 267(5), 118315(2023).14. Lin, S., Wang, J., Mi, Y., Yang, S., Wang, Z., Liu, W., Wu, D. andPeng, H., “Trifunctional Strategy for the Design and Synthesisof a Ni-CeO2@SiO2 Catalyst with Remarkable Low-temperatureSintering and Coking Resistance for Methane Dry Reforming,”Chin. J. Catal., 42(10), 1808-1820(2021).15. Zhang, C., Li, S., Wu, G. and Gong, J., “Synthesis of Stable Ni-CeO2 Catalysts via Ball-milling for Ethanol Steam Reforming,”Catalysis Today, 233(15), 53-60(2014).16. Cai, J., Jiang, F. and Liu, X., “Exploring Pretreatment Effects inCo/SiO2 Fischer-Tropsch Catalysts: Different Oxidizing GasesApplied to Oxidation-reduction Process,” Appl. Catal. B: Environ.,210, 1-13(2017).17. Tsiotsias, A. I., Charisiou, N. D., Yentekakis, I. V. and Goula, M.A., “Bimetallic Ni-Based Catalysts for CO2 Methanation: AReview,” MDPI. Nanomaterials., 11(1), 28(2020).18. Luisetto, I., Tuti, S. and Bartolomeo, E. D., “Co and Ni Supported onCeO2 as Selective Bimetallic Catalyst for Dry Reforming ofMethane,” Int. J. Hydrogen Energy., 37(21), 15992-15999(2012).19. Kang, W., Guo, H. and Varma, A., “Noble-metal-free NiCu/CeO2Catalysts for H2 Generation from Hydrous Hydrazine,” Appl.Catal. B: Environ, 249(15), 54-62(2019).20. Wang, Y., Wang, H., Dam, A., Xiao, L., Qi, Y., Niu, J., Yang, J.,Zhu, Y., Holmen, A. and Chen, De., “Understanding Effects ofNi Particle Size on Steam Methane Reforming Activity by CombinedExperimental and Theoretical Analysis,” Catalysis Today,355(15), 139-147(2020).21. Moliner, R., Echegoyen, Y., Suelves, I., Lázaro, M. and Palacios,J., “Ni–Mg and Ni–Cu–Mg Catalysts for SimultaneousProduction of Hydrogen and Carbon Nanofibers: The Effect ofCalcination Temperature,” Int. J. Hydrogen Energy, 33, 1719-1728(2008).22. Schoemaker, S. E., Bismeijer, S., Wezendonk, D. F. L., Meeldijk,J. D., Welling, T. A. J. and de Jongh, P. E., “Balancing Act:Influence of Cu Content in NiCu/C Catalysts for Methane Decomposition,”Mater. Adv., 5, 4251-4261(2024).23. Kim, M.-J., Lee, S.-J., Ryu, I.-S., Jeon, M.-W., Moon, S.-H.,Roh, H.-S. and Jeon, S. G., “Catalytic Decomposition of N-Oover Cobalt-based Spinel Oxides: The Role of Additives,” Mol.Catal., 442, 202-207(2017).24. Ping, D., Wang, C., Dong, X. and Dong, Y., “Co-production ofHydrogen and Carbon Nanotubes on Nickel Foam via MethaneCatalytic Decomposition,” Appl. Surf. Sci., 369(30), 299-307(2016).25. Abdullahi, I., Sakulchaicharoen, N. and Herrera, J. E., “A MechanisticStudy on the Growth of Multi-walled Carbon Nanotubesby Methane Decomposition over Nickel–alumina Catalyst,” Diam.Relat. Mater., 23, 76-82(2012).26. Yousefi, A. T., Tanaka, H., Bagheri, S., Elfghi, F. M., Rusop, M.M. and Ikeda, S., “Vectorial Crystal Growth of Oriented VerticallyAligned Carbon Nanotubes Using Statistical Analysis,” Cryst.Growth Des., 15(7), 3457-3463(2015).27. Christensen, A. N. and McDonald, I. R., “Crystal Growth andSurface Structure. Part I,” J. Cryst. Growth, 22, 79-85(1974).28. Gu, S. and Reina, T. R., “A Review of Advanced Catalyst Developmentfor Fischer–Tropsch Synthesis of Hydrocarbons from BiomassDerived Syn-gas,” Catal. Sci. Technol., 4, 1234-1245(2020).29. Schaper, A. K., Hou, H., Greiner, A. and Phillipp, F., “The Roleof Iron Carbide in Multiwalled Carbon Nanotube Growth,” J.Catal., 222(1), 250-254(2004).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로