ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2025 KICHE. All rights reserved

Overall

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 5, 2024
Revised October 9, 2024
Accepted October 11, 2024
Available online February 1, 2025
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Cited

TEOS, CTAB를 이용한 세리아 표면 개질이 분산 효과에 미치는 영향

Dispersion Effect of Ceria Nanoparticle by TEOS and CTAB Modification

동국대학교 화공생물공학과
1School of Intelligent Manufacturing, Luoyang Institute of Science and Technology, Luoyang 471023, China 2School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
pjhoon@dongguk.edu
Korean Chemical Engineering Research, February 2025, 63(1), 131-136(6)
https://doi.org/10.9713/kcer.2025.63.1.131
downloadDownload PDF

Abstract

본 연구는 개질된 세리아 나노입자 분산 및 현탁 안정성을 위해 상이한 표면 개질을 사용하여 세리아 나노입자의

표면 특성을 개질하는 것을 목표로 한다. 브로민화 세트리모늄(CTAB) 양이온 계면활성제와 테트라에틸 규산염 광물

(TEOS) 실란 커플링제에 의해 사용되는 두 가지 표면 개질 공정을 수행하였으며 결과를 분석하고 평가하였다. 개질

전후 세리아 나노입자 표면의 원소 간 결합, 표면 개질의 유효성, 현탁성 및 분산 효과는 X-선 광전자 분광기(XPS), 입

자 크기 분석(PSA) 및 zeta potential 시험에 의해 평가되었다. 상기 결과를 통해 TEOS, CTAB가 세리아 나노입자 표

면을 성공적으로 개질시켰음을 확인하였으며, 이는 개질 전 세리아 나노입자와 비교하여 표면 개질을 진행한 나노입

자의 분산성 및 현탁 안정성 향상으로 이어졌다.

The objective of this study is to alter the surface characteristics of modified ceria nanoparticles through

various surface modification techniques to enhance their dispersion and suspension stability. Two surface modification

methods were examined and compared: the use of cationic surfactants, such as cetrimonium bromide (CTAB), and silane

coupling agents, such as tetraethyl orthosilicate (TEOS). The effects of surface modification on ceria nanoparticles were

evaluated using X-ray photoelectron spectrometry (XPS), particle size analysis (PSA), and zeta potential tests. The study

examined the binding, effectiveness, suspension, and dispersion of the particles before and after modification. The results

indicate that TEOS and CTAB were successful in modifying the surface of the ceria particles, resulting in improved

dispersibility and suspension stability of the surface-modified nanoparticles compared to untreated ceria nanoparticles.

References

1. Chu, X., Yu, J. and Hou, Y.-L., “Surface Modification of MagneticNanoparticles in Biomedicine,” Chin. Phys. B 24(1), 014704(2015).2. Kango, S., Kalia, S., Celli, A., Njuguna, J. and Habibi, Y.,“Kumar R. Surface Modification of Inorganic Nanoparticles forDevelopment of Organic–inorganic Nanocomposites—A Review,”Prog. Polym. Sci., 38(8), 1232-1261(2013).3. Konsolakis, Michalis, Maria Lykaki. “Facet-dependent Reactivityof Ceria Nanoparticles Exemplified by CeO2-based TransitionMetal Catalysts: A Critical Review,” Catalysts 11(4), 452(2021).4. Jayakumar, G., Irudayaraj, A. A. and Raj, A. D., “Investigationon the Synthesis and Photocatalytic Activity of Activated Carbon–cerium Oxide (AC–ceria) Nanocomposite,” Appl. Phys. A.125(11), 742(2019).5. Cheng, J., Huang, S. and Lu, X., “Preparation of Surface ModifiedCeria Nanoparticles as Abrasives for the Application of ChemicalMechanical Polishing (CMP),” ECS J. Solid. State. Sci. Technol.,9(2), 024015(2020).6. Kang, H.-G., Katoh, T., Kim, S.-J., Paik, U., Park, H.-S. and Park,J.-G., “Effects of Grain Size and Abrasive Size of PolycrystallineNano-particle Ceria Slurry on Shallow Trench Isolation ChemicalMechanical Polishing,” Jpn. J. Appl. Phys., 43(3A), L365(2004).7. Lee, J., Kim, E., Bae, C., Seok, H., Cho, J., Aydin, K. and Kim, T.“Improvement of Oxide Chemical Mechanical Polishing Performanceby Increasing Ce3+/Ce4+ Ratio in Ceria Slurry via HydrogenReduction,” Mater. Sci. Semicond. Process, 159, 107349(2023).8. Zhang, Z., Yu, L., Liu, W. and Song, Z., “Surface Modificationof Ceria Nanoparticles and Their Chemical Mechanical PolishingBehavior on Glass Substrate,” Appl. Surf. Sci., 256(12), 3856-3861(2010).9. Sorooshian, A., Ashwani, R., Choi, H. K., Moinpour, M., Oehler,A. and Tregub, A., “Effect of Particle Interaction on Agglomerationof Silica-Based CMP Slurries,” MRS Online ProceedingsLibrary., 816(1), 491-497(2004).10. Jiao, L., Cui, Y., Chen, Z., Jin, Y. and Lin, N., Study on the ParticlesClassification Control of CeO2 Polishing Powder. In: 9thInternational Symposium on Advanced Optical Manufacturing andTesting Technologies: Advanced Optical Manufacturing Technologies.SPIE, 402-407(2019).11. Ye, W., Baoguo, Z., Pengfei, W., Min, L., Dexing, C. and Wenhao,X., “Improving the Dispersion Stability and Chemical MechanicalPolishing Performance of Ceria Slurries,” ECS J. Solid StateSci. Technol., 12(4), 044004(2023).12. Chen, Y., Mu, Z., Wang, W. and Chen, A., “Development ofMesoporous SiO2/CeO2 Core/shell Nanoparticles with TunableStructures for Non-damage and Efficient Polishing,” Ceram. Int.,46(4), 4670-4678(2020).13. Hah, H. J. and Koo, S. M., “Surface Modification of PTMS Particleswith Organosilanes: TEOS-, VTMS-, and MTMS-ModifiedParticles,” J. Sol-Gel Sci. Technol., 31(1), 117-121(2004).14. Thanneeru, R., Patil, S., Deshpande, S. and Seal, S., “Effect ofTrivalent Rare Earth Dopants in Nanocrystalline Ceria Coatingsfor High-temperature Oxidation Resistance,” Acta Mater., 55(10),3457-3466(2007).15. Cho, H., Lee, D., Hong, S., Kim, H., Jo, K., Kim, C. and Yoon,I., “Surface Modification of ZrO2 Nanoparticles with TEOS toPrepare Transparent ZrO2@SiO2-PDMS Nanocomposite Filmswith Adjustable Refractive Indices,” Nanomaterials. 12(14), 2328(2022).16. Klein, L. C. and Garvey, G. J., “Tetraethylorthosilicate (Teos),”MRS Online Proceedings Library (OPL), 32, 33(1984).17. Zheng, L., Zhou, J., Shen, J., Qi, Y., Li, S. and Shen, S., “TEOSSurface Modification of CLST Ceramic Particles for PTFE-basedComposites,” J. Mater. Sci-Mater. Electron., 29(20), 17195-200(2018).18. Kaviyarasu, K., Manikandan, E., Nuru, Z. Y. and Maaza, M.,“Investigation on the Structural Properties of Ceria Nanofibersvia CTAB Surfactant,” Mater. Lett., 160, 61-63(2015).19. Shettigar, R. R., Misra, N. M. and Patel, K., “Cationic Surfactant(CTAB) a Multipurpose Additive in Polymer-based Drilling Fluids,”J. Pet. Explor. Prod. Technol., 8(2), 597-606(2018).20. Wang, T., Li, W., Xu, D., Wu, X., Cao, L. and Meng, J., “A Noveland Facile Synthesis of Black TiO2 with Improved Visible-lightPhotocatalytic H2 Generation: Impact of Surface Modificationwith CTAB on Morphology, Structure and Property,” Appl. Surf.Sci., 426, 325-332(2017).21. Zhuang, X., Magnone, E., Han, S .W. and Park, J. H., “NovelSurface Modification Strategies for Enhanced CeO2 NanoparticleDispersion and Suspension Stability,” Ceram. Int., 50(13), 24801-24814(2024).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로