ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2025 KICHE. All rights reserved

Overall

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 6, 2024
Revised October 2, 2024
Accepted October 11, 2024
Available online January 1, 2025
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Cited

광열전환 및 촉매 특성을 가진 금-펩타이드 하이브리드 나노섬유의 합성 및 특성 분석

Synthesis and Characterization of Gold-Peptide Hybrid Nanofibers with Photothermal Conversion and Catalytic Properties

경북대학교 의생명융합공학과
Department of Biomedical Convergence Science and Technology, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Korea
kimin@knu.ac.kr
Korean Chemical Engineering Research, February 2025, 63(1), 137-143(7)
https://doi.org/10.9713/kcer.2025.63.1.137
downloadDownload PDF

Abstract

본 연구에서는 금-펩타이드 하이브리드 나노섬유를 합성하고, 광열전환 및 촉매 특성을 조사하였다. 금 이온의 결합과

환원을 시킬 수 있는 펩타이드 서열을 설계하고, 이를 수용액에서 나노섬유로 자기조립하였다. 자기조립 메커니즘을

분석하기 위해, 비공유결합 억제제 처리실험을 진행하여 β-시트 구조의 형성을 확인하였다. 펩타이드 나노섬유는 생광

물화 과정을 거쳐 표면에 금 나노입자를 합성하였고, 자외선-가시광선 분광광도계, 투과 전자 현미경, X선 회절 분석

법을 사용하여 분석하였다. 금-펩타이드 하이브리드 나노섬유는 36.3 × 10-3 s-1의 유기염료 분해 반응 속도 상수를 가

지고, 11.2%의 광열전환 효율을 가지는 것을 확인하였다.

In this study, gold-peptide hybrid nanofibers were synthesized and their photothermal conversion and

catalytic properties were investigated. A peptide sequence capable of binding and reducing gold ions was designed, and

it was self-assembled into nanofibers in an aqueous solution. To analyze the self-assembly mechanism, experiments with

non-covalent bond inhibitors were conducted, confirming the formation of β-sheet structures. The peptide nanofibers

underwent a biomineralization process to synthesize gold nanoparticles on their surface, which were analyzed using UVVis

spectroscopy, transmission electron microscopy, and X-ray diffraction. The gold-peptide hybrid nanofibers exhibited

a reaction rate constant of 36.3 × 10-3 s-1 for organic dye degradation and a photothermal conversion efficiency of 11.2%.

References

1. Pigliacelli, C., Sánchez-Fernández, R., García, M. D., Peinador,C. and Pazos, E., “Self-assembled Peptide–inorganic NanoparticleSuperstructures: From Component Design to Applications,”Chem. Commun., 56(58), 8000-8014(2020).2. Chen, C. L. and Rosi, N. L., “Peptide-based Methods for thePreparation of Nanostructured Inorganic Materials,” Angew. Chem.Int. Ed., 49(11), 1924-1942(2010).3. Yang, W., Guo, W., Chang, J. and Zhang, B., “Protein/peptidetemplatedBiomimetic Synthesis of Inorganic Nanoparticles forBiomedical Applications,” J. Mater. Chem. B, 5(3), 401-417(2017).4. Shrestha, S., Wang, B. and Dutta, P., “Nanoparticle Processing:Understanding and Controlling Aggregation,” Adv. Colloid InterfaceSci., 279, 102162(2020).5. Abdelrahman, A. I., Mohammad, A. M., Okajima, T. and Ohsaka, T.,“Fabrication and Electrochemical Application of Three-dimensionalGold Nanoparticles: Self-assembly,” J. Phys. Chem. B, 110(6),2798-2803(2006).6. Wustholz, K. L., Henry, A.-I., McMahon, J. M., Freeman, R. G.,Valley, N., Piotti, M. E., Natan, M. J., Schatz, G. C. and Van Duyne,R. P., “Structure−activity Relationships in Gold NanoparticleDimers and Trimers for Surface-enhanced Raman Spectroscopy,”J. Am. Chem. Soc., 132(31), 10903-10910(2010).7. Bresee, J., Bond, C. M., Worthington, R. J., Smith, C. A., Gifford,J. C., Simpson, C. A., Carter, C. J., Wang, G., Hartman, J.,Osbaugh, N. A., Shoemaker, R. K., Melander, C. and Feldheim,D. L, “Nanoscale Structure–Activity Relationships, Mode of Action,and Biocompatibility of Gold Nanoparticle Antibiotics,” J. Am.Chem. Soc., 136(14), 5295-5300(2014).8. Abbas, M., Susapto, H. H. and Hauser, C. A. E., “Synthesis andOrganization of Gold-Peptide Nanoparticles for Catalytic Activities,”ACS Omega, 7(2), 2082-2090(2022).9. Shedbalkar, U., Singh, R., Wadhwani, S., Gaidhani, S. and Chopade,B. A., “Microbial Synthesis of Gold Nanoparticles: CurrentStatus and Future Prospects,” Adv. Colloid Interface Sci., 209,40-48(2014).10. Song, J. Y. and Kim, B. S. “Biological Synthesis of Au Core-AgShell Bimetallic Nanoparticles Using Magnolia Kobus Leaf Extract,”Korean Chem. Eng. Res., 48(1), 98-102(2010).11. Sharma, N., Pinnaka, A. K., Raje, M., Fnu, A., Bhattacharyya,M. S. and Choudhury, A. R., “Exploitation of Marine Bacteriafor Production of Gold Nanoparticles,” Microb. Cell Fact., 11, 1-6(2012).12. McCaffrey, R., Long, H., Jin, Y., Sanders, A., Park, W. and Zhang,W., “Template Synthesis of Gold Nanoparticles with An OrganicMolecular Cage,” J. Am. Chem. Soc., 136(5), 1782-1785(2014).13. Zinchenko, A., Miwa, Y., Lopatina, L. I., Sergeyev, V. G. and Murata,S., “DNA Hydrogel as a Template for Synthesis of Ultrasmall GoldNanoparticles for Catalytic Applications,” ACS Appl. Mater.Interfaces., 6(5), 3226-3232(2014).14. Tian, Y., Zhang, H. V., Kiick, K. L., Saven, J. G. and Pochan, D.J., “Fabrication of One-and Two-dimensional Gold NanoparticleArrays on Computationally Designed Self-assembled PeptideTemplates,” Chem. Mater., 30(23), 8510-8520(2018).15. Kim, J. H. and Min, K. I., “Assembly and Biomineralization ofPolymorphic Gold–Peptide Superstructures Using Tyrosine-RichShort Peptides,” Adv. Funct. Mater., 33(4), 2210196(2023).16. Han, J., Liu, Y. and Guo, R., “Reactive Template Method toSynthesize Gold Nanoparticles with Controllable Size and MorphologySupported on Shells of Polymer Hollow Microspheresand Their Application for Aerobic Alcohol Oxidation in Water,”Adv. Funct. Mater., 19(7), 1112-1117(2009).17. Longo, E., Orlandin, A., Mancin, F., Scrimin, P. and Moretto, A.,“Reversible Chirality Control in Peptide-Functionalized GoldNanoparticles,” ACS Nano, 7(11), 9933-9939(2013).18. Levin, A., Hakala, T. A., Schnaider, L., Bernardes, G. J., Gazit,E. and Knowles, T. P., “Biomimetic Peptide Self-assembly forFunctional Materials,” Nat. Rev. Chem., 4(11), 615-634(2020).19. Han, J., Gong, H., Ren, X. and Yan, X., “Supramolecular NanozymesBased on Peptide Self-assembly for Biomimetic Catalysis,”Nano Today, 41, 101295(2021).20. Jin, X., Yang, H., Mao, Z. and Wang, B., “Cathepsin B-responsiveMultifunctional Peptide Conjugated Gold Nanorods for MitochondrialTargeting and Precise Photothermal Cancer Therapy,”J. Colloid Interface Sci., 601, 714-726(2021).21. Retout, M., Mantri, Y., Jin, Z., Zhou, J., Noël, G., Donovan, B.Yim, W. and Jokerst, J. V., “Peptide-induced Fractal Assembly ofSilver Nanoparticles for Visual Detection of Disease Biomarkers,”ACS Nano, 16(4), 6165-6175(2022).22. Liu, Y., Qin, Y., Zhang, Q., Zou, W., Jin, L. and Guo, R., “ArgininerichPeptide/platinum Hybrid Colloid Nanoparticle Cluster: A SingleNanozyme Mimicking Multi-enzymatic Cascade Systems inPeroxisome,” J. Colloid Interface Sci., 600, 37-48(2021).23. Min, K. I., Kim, D. H., Lee, H. J., Lin, L. and Kim, D. P., “DirectSynthesis of a Covalently Self-Assembled Peptide Nanogelfrom a Tyrosine-Rich Peptide Monomer and Its BiomineralizedHybrids,” Angew. Chem. Int. Ed., 57(20), 5630-5634(2018).24. Uosaki, K., Shen, Y. and Kondo, T., “Preparation of a HighlyOrdered Au (111) Phase on a Polycrystalline Gold Substrate byVacuum Deposition and Its Characterization by XRD, GISXRD,STM/AFM, and Electrochemical Measurements,” J. Phys. Chem.,99(38), 14117-14122(1995).25. Cui, K., Yan, B., Xie, Y., Qian, H., Wang, X., Huang, Q., He, Y.,Jin, S. and Zeng, H., “Regenerable Urchin-like Fe3O4@PDA-AgHollow Microspheres as Catalyst and Adsorbent for EnhancedRemoval of Organic Dyes,” J. Hazard. Mater., 350, 66-75(2018).26. Liao, G., Li, Q., Zhao, W., Pang, Q., Gao, H. and Xu, Z., “In-situConstruction of Novel Silver Nanoparticle Decorated PolymericSpheres as Highly Active and Stable Catalysts for Reduction ofMethylene Blue Dye,” Appl. Catal. A, 549, 102-111(2018).27. Xiao, F., Ren, H., Zhou, H., Wang, H., Wang, N. and Pan, D.,“Porous Montmorillonite@graphene Oxide@Au NanoparticleComposite Microspheres for Organic Dye Degradation,” ACSAppl. Nano Mater., 2(9), 5420-5429(2019).28. Wang, N., Xiao, F., Zhang, J., Zhou, H., Qin, Y. and Pan, D., “SphericalMontmorillonite-supported Nano-silver as a Self-sedImentaryCatalyst for Methylene Blue Removal,” Appl. Clay Sci., 174,146-151(2019).29. Li, Z. H., Chen, Y., Sun, Y. and Zhang, X. Z., “Platinum-dopedPrussian Blue Nanozymes for Multiwavelength Bioimaging GuidedPhotothermal Therapy of Tumor and Anti-inflammation,” ACSNano, 15(3), 5189-5200(2021).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로