ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2025 KICHE. All rights reserved

Overall

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 8, 2024
Revised August 2, 2024
Accepted October 26, 2024
Available online February 1, 2025
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Cited

세륨 도핑된 NiFe 층상 이중 수산화물을 이용한 Glucose의 전기화학적 산화

Cerium (Ce) Doped NiFe Layered Double Hydroxide (LDH) as a Hightly Efficient Electrocatalyst for Glucose Oxidation

한국화학연구원 정밀바이오화학연구본부 정밀화학연구센터
Center for Specialty Chemical, Division of Specialty and Bio-Based Chemicals Technology, Korea Reasearch Institute of Chemical Technology (KRICT), Jonggaro 45, Ulsan, 44412, Korea
candoit@krict.re.kr
Korean Chemical Engineering Research, February 2025, 63(1), 25-33(9)
https://doi.org/10.9713/kcer.2025.63.1.25
downloadDownload PDF

Abstract

물을 환원하여 수소를 생산할 수 있는 전기화학적 공정인 물 분해 반응은 화석연료를 대체하는 녹색에너지 기술로서

큰 주목을 받고 있다. 하지만, 이러한 기술의 효율과 장기 안정성 관점에서 산소 발생 반응(Oxygen evolution reaction,

OER)의 느린 반응 속도와 심각한 비활성화 문제로 인해 수소 생산을 위한 산업분야에서는 아직까지 제한되고 있어 이를

해결하기 위한 수많은 도전이 수행되고 있다. 본 연구에서는 알칼리 매질에서 산소 발생 반응에 필요한 과전압보다 낮은

과전압이 요구되는 Glucose 산화 반응(Glucose oxidation reaction, GOR)을 통해 부가가치가 높은 Glucose를 Glucaric

acid으로의 전환뿐 아니라 H2 발생 반응을 개선할 수 있는 Ce doped 된 NiFe 층상 이중 수산화물 촉매를 개발하였다.

The water electrolysis reaction, an electrochemical process that produces hydrogen through the reduction

of water, is gaining significant attention as a green energy technology to replace fossil fuels. However, the efficiency and

long-term stability of this technology remain limited in industrial hydrogen production due to the slow reaction rates and

serious deactivation issues associated with the oxygen evolution reaction (OER). Consequently, there are numerous

challenges to address. In this study, we developed a cerium-doped nickel-iron layered double hydroxide catalyst that

enhances hydrogen generation and facilitates the conversion of high-value-added glucose to glucaric acid via the glucose

oxidation reaction (GOR). This reaction requires an overpotential that is lower than that needed for the oxygen

generation reaction in an alkaline medium.

References

1. Rasrendra, C. B., Makertihartha, I. G. B. N., Adisasmito, S. andHeeres, H. J., “Green Chemicals from d-glucose: SystematicStudies on Catalytic Effects of Inorganic Salts on the Chemoselectivityand Yield in Aqueous Solutions,” Topics in Catalysis,53, 1241-1247(2010).2. Mika, L. T., Cséfalvay, E. and Németh, Á., “Catalytic Conversionof Carbohydrates to Initial Platform Chemicals: Chemistryand Sustainability,” Chemical Reviews, 118(2), 505-613(2018).3. Zhang, Z. and Huber, G. W., “Catalytic Oxidation of Carbohydratesinto Organic Acids and Furan Chemicals,” Chemical SocietyReviews, 47(4), 1351-1390(2018).4. Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G.,Cairney, J., Eckert, C. A., Fredick Jr, W. J., Hallett, J. P., Leak,D. J., Liotta, C. L., Mielenz, J. R., Murphy, R., Templer, R. andTschaplinski, T., “The Path Forward for Biofuels and Biomaterials,”Science, 311(5760), 484-489(2006).5. González, J. C., García, S., Bellú, S., Peregrín, J. M. S., Atria,A. M., Sala, L. F. and Signorella, S., “Redox and ComplexationChemistry of the CrVI/CrV/CrIV-D-glucuronic Acid System,”Dalton Transactions, 39(9), 2204-2217(2010).6. Mehtiö, T., Toivari, M., Wiebe, M. G., Harlin, A., Penttilä, M.and Koivula, A., “Production and Applications of CarbohydratederivedSugar Acids as Generic Biobased Chemicals,” CriticalReviews in Biotechnology, 36(5), 904-916(2016).7. Derrien, E., Marion, P., Pinel, C. and Besson, M., “Influence ofResidues Contained in Softwood Hemicellulose Hydrolysates onthe Catalytic Oxidation of Glucose to Glucarate in AlkalineAqueous Solution,” Organic Process Research & Development,20(7), 1265-1275(2016).8. Liu, Y., Gong, X., Wang, C., Du, G., Chen, J. and Kang, Z.,“Production of Glucaric Acid from Myo-inositol in EngineeredPichia Pastoris,” Enzyme and Microbial Technology, 91, 8-16(2016).9. Lee, J., Saha, B. and Vlachos, D. G., “Pt Catalysts for EfficientAerobic Oxidation of Glucose to Glucaric Acid in Water,” GreenChemistry, 18(13), 3815-3822(2016).10. Solmi, S., Morreale, C., Ospitali, F., Agnoli, S. and Cavani, F.,“Oxidation of d-Glucose to Glucaric Acid Using Au/C Catalysts,”ChemCatChem, 9(14), 2797-2806(2017).11. Jin, X., Zhao, M., Vora, M., Shen, J., Zeng, C., Yan, W., Thapa.P. S., Subramaniam, B. and Chaudhari, R. V., “Synergistic Effectsof Bimetallic PtPd/TiO2 Nanocatalysts in Oxidation of Glucoseto Glucaric Acid: Structure Dependent Activity and Selectivity,”Industrial & Engineering Chemistry Research, 55(11),2932-2945(2016).12. Chen, L. Z., Huang, S. L., Hou, J., Guo, X. P., Wang, F. S. andSheng, J. Z., “Cell-based and Cell-free Biocatalysis for the Productionof d-glucaric Acid,” Biotechnology for Biofuels, 13, 1-11(2020).13. Kornecki, J. F., Carballares, D., Tardioli, P. W., Rodrigues, R. C.,Berenguer-Murcia, Á., Alcántara, A. R. and Fernandez-Lafuente,R., “Enzyme Production of D-gluconic Acid and Glucose Oxidase:Successful Tales of Cascade Reactions,” Catalysis Science& Technology, 10(17), 5740-5771(2020).14. Jiang, Y., Liu, K., Zhang, H., Wang, Y., Yuan, Q.., Su, N., Bao,J. and Fang, X., “Gluconic Acid Production from Potato Wasteby Gluconobacter Oxidans Using Sequential Hydrolysis andFermentation,” ACS Sustainable Chemistry & Engineering, 5(7),6116-6123(2017).15. Pasta, M., La Mantia, F. and Cui, Y., “Mechanism of GlucoseElectrochemical Oxidation on Gold Surface,” Electrochimica Acta,55(20), 5561-5568(2010).16. Cui, H. F., Ye, J. S., Liu, X., Zhang, W. D. and Sheu, F. S., “Pt–PbAlloy Nanoparticle/carbon Nanotube Nanocomposite: a StrongElectrocatalyst for Glucose Oxidation,” Nanotechnology, 17(9),2334(2006).17. Barelli, L., Bidini, G., Gallorini, F. and Servili, S., “HydrogenProduction Through Sorption-enhanced Steam Methane Reformingand Membrane Technology: a Review,” Energy, 33(4), 554-570(2008).18. Kojima, Y., Suzuki, K. I., Fukumoto, K., Sasaki, M., Yamamoto, T.,Kawai, Y. and Hayashi, H., “Hydrogen Generation Using SodiumBorohydride Solution and Metal Catalyst Coated on Metal Oxide,”International Journal of Hydrogen Energy, 27(10), 1029-1034(2002).19. Weber, R. S., “Effective Use of Renewable Electricity for MakingRenewable Fuels and Chemicals,” ACS Catalysis, 9(2), 946-950(2018).20. Li, Z., Han, Y., Huang, B., Xie, Z. and Wei, Q. H., “ElectrochemicalOxidation of 5-hydroxymethylfurfural Over a Molybdenum SulfideModified Nickel-based Catalyst,” Materials Advances, 4(11),2449-2456(2023).21. Lu, Y., Liu, T., Dong, C. L., Huang, Y. C., Li, Y., Chen, J., Zou,Y. and Wang, S., “Tuning the Selective Adsorption Site of Biomasson Co3O4 by Ir Single Atoms for Electrosynthesis,” AdvancedMaterials, 33(8), 2007056(2021).22. Masoumi, Z., Tayebi, M., Tayebi, M., Masoumi Lari, S. A., Sewwandi,N., Seo, B., Lim, C. S., Kim, H. G. and Kyung, D., “ElectrocatalyticReactions for Converting CO2 to Value-added Products:Recent Progress and Emerging Trends,” International Journal ofMolecular Sciences, 24(12), 9952(2023).23. Tayebi, M., Masoumi, Z., Tayyebi, A., Kim, J. H., Lee, H., Seo,B., Lim, C. S. and Kim, H. G., “Photoelectrochemical Epoxidationof Cyclohexene on an α-Fe2O3 Photoanode Using Water asthe Oxygen Source,” ACS Applied Materials & Interfaces, 15(16),20053-20063(2023).24. Liu, X., Han, Y., Guo, Y., Zhao, X., Pan, D., Li, K. and Wen, Z.,“Electrochemical Hydrogen Generation by Oxygen EvolutionReaction-alternative Anodic Oxidation Reactions,” Advanced Energyand Sustainability Research, 3(7), 2200005(2022).25. Li, L., Bu, L., Huang, B., Wang, P., Shen, C., Bai, S., Chan, T. S.,Shao, Q., Hu, Z. and Huang, X., “Compensating Electronic EffectEnables Fast Site-to-site Electron Transfer Over Ultrathin RuMnNanosheet Branches Toward Highly Electroactive and StableWater Splitting,” Advanced Materials, 33(51), 2105308(2021).26. Zhao, L., Zhang, Y., Zhao, Z., Zhang, Q. H., Huang, L. B., Gu,L., Hu, J. S. and Wan, L. J., “Steering Elementary Steps TowardsEfficient Alkaline Hydrogen Evolution via Size-dependent Ni/NiO Nanoscale Heterosurfaces,” National Science Review, 7(1),27-36(2020).27. Liu, W. J., Dang, L., Xu, Z., Yu, H. Q., Jin, S. and Huber, G. W.,“Electrochemical Oxidation of 5-hydroxymethylfurfural WithNiFe Layered Double Hydroxide (LDH) Nanosheet Catalysts,”ACS Catalysis, 8(6), 5533-5541(2018).28. Vogt, S., Schneider, M., Schäfer-Eberwein, H. and Nöll, G.,“Determination of the pH Dependent Redox Potential of GlucoseOxidase by Spectroelectrochemistry,” Analytical Chemistry, 86(15),7530-7535(2014).29. Komori, H., Niitsu, K., Tanaka, J., Ishige, Y., Kamahori, M. andNakazato, K., “An Extended-gate CMOS Sensor Array with EnzymeimmobilizedMicrobeads for Redox-potential Glucose Detection,”In 2014 IEEE Biomedical Circuits and Systems Conference(BioCAS) Proceedings 464-467(2014).30. Li, D., Huang, Y., Li, Z., Zhong, L., Liu, C. and Peng, X., “DeepEutectic Solvents Derived Carbon-based Efficient Electrocatalystfor Boosting H2 Production Coupled with Glucose Oxidation,”Chemical Engineering Journal, 430, 132783(2022).31. Lin, X., Zhong, H., Hu, W. and Du, J., “Nickel–Cobalt SelenideElectrocatalytic Electrode toward Glucose Oxidation Couplingwith Alkaline Hydrogen Production,” Inorganic Chemistry, 62(26),10513-10521(2023).32. Xu, J., Li, F., Wang, D., Nawaz, M. H., An, Q., Han, D. and Niu,L., “Co3O4 Nanostructures on Flexible Carbon Cloth for CrystalPlane Effect of Nonenzymatic Electrocatalysis for Glucose,”Biosensors and Bioelectronics, 123, 25-29(2019).33. Liu, Y., Wang, Q., Zhang, J., Ding, J., Cheng, Y., Wang, T., Li,J., Hu, F., Yang, H. B. and Liu, B., “Recent Advances in CarbonsupportedNoble-metal Electrocatalysts for Hydrogen EvolutionReaction: Syntheses, Structures, and Properties,” Advanced EnergyMaterials, 12(28), 2200928(2022).34. Li, J., Li, J., Zhou, X., Xia, Z., Gao, W., Ma, Y. and Qu, Y., “HighlyEfficient and Robust Nickel Phosphides as Bifunctional Electrocatalystsfor Overall Water-splitting,” ACS Applied Materials &Interfaces, 8(17), 10826-10834(2016).35. Wan, J., Ye, W., Gao, R., Fang, X., Guo, Z., Lu, Y. and Yan, D.,“Synthesis From a Layered Double Hydroxide Precursor for aHighly Efficient Oxygen Evolution Reaction,” Inorganic ChemistryFrontiers, 6(7), 1793-1798(2019).36. Gao, R. and Yan, D., “Layered Host–guest Long-afterglowUltrathin Nanosheets: High-efficiency Phosphorescence EnergyTransfer at 2D Confined Interface,” Chemical Science, 8(1), 590-599(2017).37. Arif, M., Yasin, G., Shakeel, M., Fang, X., Gao, R., Ji, S. and Yan,D., “Coupling of Bifunctional CoMn-layered Double Hydroxide@graphitic C3N4 Nanohybrids Towards Efficient PhotoelectrochemicalOverall Water Splitting,” Chemistry–An Asian Journal,13(8), 1045-1052(2018).38. Arif, M., Yasin, G., Shakeel, M., Mushtaq, M. A., Ye, W., Fang,X., Ji, S. and Yan, D., “Hierarchical CoFe-layered Double Hydroxideand gC3N4 Heterostructures with Enhanced Bifunctional Photo/electrocatalytic Activity Towards Overall Water Splitting,” MaterialsChemistry Frontiers, 3(3), 520-531(2019).39. Friebel, D., Louie, M. W., Bajdich, M., Sanwald, K. E., Cai, Y.,Wise, A. M., Cheng, M. J., Sokaras, D., Weng, T. C., Alonso Mori,R., Davis, R. C., Bargar, J. R., Norskov, J. K., Nilsson, A. and Bell,A. T., “Identification of Highly Active Fe Sites in (Ni, Fe) OOHfor Electrocatalytic Water Splitting,” Journal of the AmericanChemical Society, 137(3), 1305-1313(2015).40. Xiao, M., Wu, C., Zhu, J., Zhang, C., Li, Y., Lyu, J., Zeng, W.,Li, H., Chen, L. and Mu, S., “In situ Generated Layered NiFe-LDH/MOF Heterostructure Nanosheet Arrays with AbundantDefects for Efficient Alkaline and Seawater Oxidation,” NanoResearch, 16(7), 8945-8952(2023).41. Yin, Q., Luo, J., Zhang, J., Zheng, L., Cui, G., Han, J. and O'Hare,D., “High-performance, Long Lifetime Chloride Ion BatteryUsing a NiFe–Cl Layered Double Hydroxide Cathode,” Journalof Materials Chemistry A, 8(25), 12548-12555(2020).42. Xu, M. and Wei, M., “Layered Double Hydroxide-based Catalysts:Recent Advances in Preparation, Structure, and Applications,”Advanced Functional Materials, 28(47), 1802943(2018).43. Zhang, R., Xue, Z., Qin, J., Sawangphruk, M., Zhang, X. andLiu, R., “NiCo-LDH/Ti3C2 MXene Hybrid Materials for LithiumIon Battery with High-rate Capability and Long Cycle Life,” Journalof Energy Chemistry, 50, 143-153(2020).44. Li, X., Du, D., Zhang, Y., Xing, W., Xue, Q. and Yan, Z., “LayeredDouble Hydroxides Toward High-performance Supercapacitors,”Journal of Materials Chemistry A, 5(30), 15460-15485(2017).45. Zhou, L., Shao, M., Wei, M. and Duan, X., “Advances in EfficientElectrocatalysts Based on Layered Double Hydroxides andTheir Derivatives,” Journal of Energy Chemistry, 26(6), 1094-1106(2017).46. Zhang, Y. C., Han, C., Gao, J., Pan, L., Wu, J., Zhu, X. D. andZou, J. J., “NiCo-based Electrocatalysts for the Alkaline OxygenEvolution Reaction: a Review,” Acs Catalysis, 11(20), 12485-12509(2021).47. Gong, M. and Dai, H., “A Mini Review of NiFe-based Materialsas Highly Active Oxygen Evolution Reaction Electrocatalysts,”Nano Research, 8, 23-39(2015).48. Cai, Z., Bu, X., Wang, P., Ho, J. C., Yang, J. and Wang, X.,“Recent Advances in Layered Double Hydroxide Electrocatalystsfor the Oxygen Evolution Reaction,” Journal of MaterialsChemistry A, 7(10), 5069-5089(2019).49. Chen, Y., Rui, K., Zhu, J., Dou, S. X. and Sun, W., “Recent Progresson Nickel-based Oxide/(Oxy) Hydroxide Electrocatalystsfor the Oxygen Evolution Reaction,” Chemistry–A European Journal,25(3), 703-713(2019).50. Ding, L., Li, K., Xie, Z., Yang, G., Yu, S., Wang, W., Yu, H.,Baxter, J., Cullen, D. A. and Zhang, F. Y., “Constructing UltrathinW-doped NiFe Nanosheets via Facile Electrosynthesis as BifunctionalElectrocatalysts for Efficient Water Splitting,” ACS AppliedMaterials & Interfaces, 13(17), 20070-20080(2021).51. Pintado, S., Goberna-Ferrón, S., Escudero-Adán, E. C. and Galán-Mascarós, J. R., “Fast and Persistent Electrocatalytic Water Oxidationby Co–Fe Prussian Blue Coordination Polymers,” Journal ofthe American Chemical Society, 135(36), 13270-13273(2013).52. Gao, W., Wen, D., Ho, J. C. and Qu, Y., “Incorporation of RareEarth Elements with Transition Metal–based Materials for Electrocatalysis:a Review for Recent Progress,” Materials Today Chemistry,12, 266-281(2019).53. Ng, J. W. D., García-Melchor, M., Bajdich, M., Chakthranont,P., Kirk, C., Vojvodic, A. and Jaramillo, T. F., “Gold-supportedCerium-doped NiOx Catalysts for Water Oxidation,” Nature Energy,1(5), 1-8(2016).54. Zhang, G., Wang, B., Li, L. and Yang, S., “Phosphorus andYttrium Codoped Co(OH)F Nanoarray as Highly Efficient andBifunctional Electrocatalysts for Overall Water Splitting,” Small,15(42), 1904105(2019).55. Gao, W., Yan, M., Cheung, H. Y., Xia, Z., Zhou, X., Qin, Y.,Wong, C. Y., Ho, J. C., Chang, C. R. and Qu, Y., “ModulatingElectronic Structure of CoP Electrocatalysts Towards EnhancedHydrogen Evolution by Ce Chemical Doping in Both Acidicand Basic Media,” Nano Energy, 38, 290-296(2017).56. Wang, X., Yang, Y., Diao, L., Tang, Y., He, F., Liu, E., He, C.,Shi, C., Li, J., Sha, J., Ji, S., Zhang, P., Ma, L. and Zhao, N.,“CeOx-decorated NiFe-layered Double Hydroxide for EfficientAlkaline Hydrogen Evolution by Oxygen Vacancy Engineering,”ACS Applied Materials & Interfaces, 10(41), 35145-35153(2018).57. Gao, W., Gou, W., Ma, Y., Wei, R., Ho, J. C. and Qu, Y., “CeriumPhosphate as a Novel Cocatalyst Promoting NiCo2O4 NanowireArrays for Efficient and Robust Electrocatalytic Oxygen Evolution,”ACS Applied Energy Materials, 2(8), 5769-5776(2019).58. Gao, W., Xia, Z., Cao, F., Ho, J. C., Jiang, Z. and Qu, Y., “ComprehensiveUnderstanding of the Spatial Configurations of CeO2in NiO for the Electrocatalytic Oxygen Evolution Reaction:Embedded or Surface-loaded,” Advanced Functional Materials,28(11), 1706056(2018).59. McCrory, C. C., Jung, S., Peters, J. C. and Jaramillo, T. F.,“Benchmarking Heterogeneous Electrocatalysts for the OxygenEvolution Reaction,” Journal of the American Chemical Society,135(45), 16977-16987(2013).60. Diaz-Morales, O., Ledezma-Yanez, I., Koper, M. T. and Calle-Vallejo, F., “Guidelines for the Rational Design of Ni-based DoubleHydroxide Electrocatalysts for the Oxygen Evolution Reaction,”Acs Catalysis, 5(9), 5380-5387(2015).61. Thangavel, P., Lee, H., Kong, T. H., Kwon, S., Tayyebi, A., Lee,J. H., Choi, S. M. and Kwon, Y., “Immobilizing Low-Cost MetalNitrides in Electrochemically Reconstructed Platinum GroupMetal (PGM) Free Oxy (Hydroxides) Surface for ExceptionalOER Kinetics in Anion Exchange Membrane Water Electrolysis,”Advanced Energy Materials, 13(6), 2203401.62. Wang, X., Yang, Y., Diao, L., Tang, Y., He, F., Liu, E., He, C., Shi,C., Li, J., Sha, J., Ji, S., Zhang, P., Ma, L. and Zhao, N., CeOxdecoratedNiFe-layered Double Hydroxide for Efficient AlkalineHydrogen Evolution by Oxygen Vacancy Engineering,” ACS AppliedMaterials & Interfaces, 10(41), 35145-35153(2018).63. Liu, W. J., Xu, Z., Zhao, D., Pan, X. Q., Li, H. C., Hu, X., Fan,Z. Y., Wang, W. K., Zhao, G. H., Jin, S., Huber, G. W. and Yu, H.Q., “Efficient Electrochemical Production of Glucaric Acid andH2 via Glucose Electrolysis,” Nature Communications, 11(1), 265(2020).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로