Overall
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 16, 2024
Revised October 24, 2024
Accepted October 26, 2024
Available online February 1, 2025
-
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Most Cited
산화방지제와 금속 비활성화제를 이용한 열안정성 연료의 흡열특성과 코크저감에 대한 연구
Endothermic Properties and Coke Reduction of Thermally Stable Fuels using Antioxidants and Metal Deactivators
https://doi.org/10.9713/kcer.2025.63.1.34

Abstract
극초음속 비행체의 비행속도가 증가함에 따라 액체 탄화수소 연료의 열분해를 통한 재생 냉각 기술이 주목받고 있
다. 그러나 액체 탄화수소 연료의 열분해 과정에서 탄소 침적물인 코크가 발생한다는 문제점이 있다. 코크 침적물은 비
행체에 많은 문제점을 발생시키므로 소량의 첨가제를 투입하여 코크 발생을 억제하는 방법이 도입되었다. 본 연구에
서는 흐름형 열분해 반응기에서 열안정성 연료를 대상으로 산화방지제와 금속 비활성화제를 첨가하여 연료의 흡열 특
성과 코크 저감 특성 변화를 분석하였다. 최적 농도의 산화방지제와 금속 비활성화제를 첨가한 결과 첨가제를 사용하
지 않은 경우에 비해 흡열량은 6.31% 증가하였고, 코크 발생량은 75% 감소하였다.
As the flight speed of hypersonic aircraft increases, regenerative cooling system using pyrolysis of liquid
hydrocarbon fuels is being discussed. However, the decomposition of liquid hydrocarbon fuels results in the coke
formation, a carbon deposit, which can cause serious problems in the flow channels. To address this, a method of adding
small amounts of additives to reduce coke formation has been proposed. In this study, we compared the endothermic
characteristics and coke reduction of thermally stable fuel by adding antioxidants and metal deactivators in a flow type
reactor. The results showed that use of optimal additives increased the heat sink 6.31%, coke formation reduced up to
75% compared to when no additives were used.
References
Aiaa(1994).
2. Heppenheimer, T. A., Facing the Heat Barrier: A History of
Hypersonics, NASA(2006).
3. Sobel, D. R. and Spadaccini, L. J., “Hydrocarbon Fuel Cooling
Technologies for Advanced Propulsion,” (1997).
4. Bouchez, M., “Scramjet Thermal Management,” NATO, (2010).
5. Gulli, S., Maddalena, L. and Hosder, S., “Variable Transpiration
Cooling: A New Solution for the Thermal Management of Hypersonic
Vehicles,” 221(2012).
6. Colwell, G. T. and Modlin, J. M., “Heat Pipe and Surface Mass
Transfer Cooling of Hypersonic Vehicle Structures,” J. Thermophys.
Heat Transfer, 6(3), 492-499(1992).
7. Li, Y., Sun, F., Xie, G. and Qin, J., “Improved Thermal Performance
of Cooling Channels with Truncated Ribs for a Scramjet
Combustor Fueled by Endothermic Hydrocarbon,” Appl. Therm.
Eng., 142, 695-708(2018).
8. Argyle, M. D. and Bartholomew, C. H., “Heterogeneous Catalyst
Deactivation and Regeneration: A Review,” Catalysts, 5(1), 145-
269(2015).
9. Towfighi, J., Sadrameli, M. and Niaei, A., “Coke Formation
Mechanisms and Coke Inhibiting Methods in Pyrolysis Furnaces,”
J. Chem. Eng. Japan, 35(10), 923-937(2002).
10. Edwards, T., “Cracking and Deposition Behavior of Supercritical
Hydrocarbon Aviation Fuels,” Combustion Sci. Technol., 178(1-
3), 307-334(2006).
11. Minami, I., “Molecular Science of Lubricant Additives,” Applied
Sciences, 7(5), 445(2017).
12. Golubeva, I. A., Klinaeva, E. V. and Yakovlev, V. S., “Stabilization
of Blended Diesel Fuels by Combinations of Antioxidants
and Metal Deactivators,” Chem. Technol. Fuels Oils, 30(3-4),
(1994).
13. Braun, J., “Additives,” Lubricants and Lubrication, 117-152(2017).
14. Huang, H., Spadaccini, L. and Sobel, D., “Endothermic Heatsink
of Jet Fuels for Scramjet Cooling,” 3871(2002).
15. Huang, H., Spadaccini, L. J. and Sobel, D. R., “Fuel-cooled Thermal
Management for Advanced Aeroengines,” J. Eng. Gas Turbines
Power, 126(2), 284-293(2004).
16. Kim, N., Park, C., Cho, S., Jeong, B. and Jung, J., “Decomposition
of Thermally Stable Fuel Using a Cerium-modified Zeolite
Catalyst and Endothermic Characteristics,” ACS Omega, 8(45),
43130-43138(2023).
17. Zhu, Y., Yu, C., Li, Z., Mi, Z. and Zhang, X., “Formation of
Coke in Thermal Cracking of Jet Fuel Under Supercritical Conditions,”
Frontiers of Chemical Engineering in China, 2, 17-21
(2008).
18. Li, H., Wang, Y., Wang, L., Zhang, X. and Liu, G., “Pyrolysis
and Coke Deposition of JP-10 With Decalin in Regenerative
Cooling Channels,” Energy Fuels, 36(12), 6096-6108(2022).
19. Symoens, S. H., Olahova, N., Muñoz Gandarillas, A. E., Karimi,
H., Djokic, M. R., Reyniers, M., Marin, G. B. and Van Geem, K.
M., “State-of-the-art of Coke Formation During Steam Cracking:
Anti-coking Surface Technologies,” Ind. Eng. Chem. Res., 57(48),
16117-16136(2018).