Overall
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 16, 2024
Revised October 21, 2024
Accepted November 5, 2024
Available online February 1, 2025
-
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Most Cited
건습식 하이브리드 가수분해를 이용한 수소화붕소나트륨과 옥살산 이수화물 혼합물의 탈수소화 반응 연구
Dehydrogenation Reaction of Sodium Borohydride and Oxalic Acid Dihydrate Compound Using Dry-Wet Hybrid Hydrolysis
https://doi.org/10.9713/kcer.2025.63.1.42

Abstract
수소는 높은 에너지밀도를 가지는 청정에너지원으로써 다양한 연료전지의 연료로 사용된다. 본 연구에서는 수소 저
장물질인 수소화붕소나트륨(SBH)과 옥살산 이수화물(OA·2H2O)을 이용하여 물 없이 수소를 추출하는 건식 가수분해
반응을 진행시킨 후 미반응된 SBH와 소량의 물을 이용한 습식 가수분해 반응을 이용하여 추가로 수소를 추출하였다.
이와 같은 SBH와 OA·2H2O을 이용한 건습식 하이브리드 가수분해 반응을 이용하여 최고 수율 6.5 wt%의 수소를 저
온에서 빠르게 발생시킬 수 있었으며, 이는 기존 건식 가수분해 반응의 최대 수율 3.8 wt%에 비해 42% 만큼 증가한
결과이다.
Hydrogen, with its high energy density, is used as a clean energy source in various fuel cells. In this study,
we conducted a dry hydrolysis reaction using sodium borohydride (SBH), a hydrogen storage material, and oxalic acid
dihydrate (OA·2H2O) to extract hydrogen without water. Following this, we performed a wet hydrolysis reaction using
unreacted SBH and a small amount of water to further extract hydrogen. By employing this dry-wet hybrid hydrolysis
reaction with SBH and OA·2H2O, we were able to rapidly generate hydrogen at a high yield of 6.5 wt% at low
temperatures. This represents an increase of 42% compared to the maximum yield of 3.8 wt% from conventional dry
hydrolysis reactions.
References
Energy, Economy and Storage: Review and Recommendation,”
Int. J. Hydrogen. Energy., 44(29), 15072-15086(2019).
2. Edwards, P. P., Kuznetsov, V. L. and David, W. I., “Hydrogen
Energy,” Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 365(1853),
1043-1056(2007).
3. Winter, C., “Hydrogen energy—Abundant, Efficient, Clean: A
Debate Over the Energy-system-of-change,” Int. J. Hydrogen.
Energy., 34(14), S1-S52(2009).
4. Zhao, Y., Mao, Y., Zhang, W., Tang, Y. and Wang, P., “Reviews
on the Effects of Contaminations and Research Methodologies
for PEMFC,” Int. J. Hydrogen. Energy., 45(43), 23174-23200
(2020).
5. Olabi, A. G., Wilberforce, T. and Abdelkareem, M. A., “Fuel Cell
Application in the Automotive Industry and Future Perspective,”
Energy., 214, 118955(2021).
6. Hwang, H. T. and Varma, A., “Hydrogen Storage for Fuel Cell
Vehicles”, Current Opinion in Chemical Engineering, 5, 42-48
(2014).
7. Arat, H. T., Sürer, M. G., Gökpinar, S. and Aydin, K., “Conceptual
Design Analysis for a Lightweight Aircraft with a Fuel Cell
Hybrid Propulsion System,” Energy Sources, Part A: Recovery,
Utilization, and Environmental Effects, 45(1), 46-60(2023).
8. Kim, K., Kim, T., Lee, K. and Kwon, S., “Fuel Cell System with
Sodium Borohydride as Hydrogen Source for Unmanned Aerial
Vehicles”, J. Power Sources, 196(21), 9069-9075(2011).
9. Borup, R. L., Kusoglu, A., Neyerlin, K. C., Mukundan, R., Ahluwalia,
R. K., Cullen, D. A., More, K. L., Weber, A. Z. and Myers,
D. J., “Recent Developments in Catalyst-related PEM Fuel Cell
Durability,” Current Opinion in Electrochemistry, 21, 192-200
(2020).
10. Kojima, Y., “Hydrogen Storage Materials for Hydrogen and
Energy Carriers,” Int. J. Hydrogen. Energy., 44(33), 18179-18192
(2019).
11. Santos, D. and Sequeira, C., “Sodium Borohydride as a Fuel for
the Future,” Renewable and Sustainable Energy Reviews, 15(8),
3980-4001(2011).
12. Jiang, H., Singh, S. K., Yan, J., Zhang, X. and Xu, Q., “Liquidphase
Chemical Hydrogen Storage: Catalytic Hydrogen Generation
Under Ambient Conditions,” ChemSusChem: Chemistry &
Sustainability Energy & Materials, 3(5), 541-549(2010).
13. Amendola, S. C., Sharp-Goldman, S. L., Janjua, M. S., Spencer,
N. C., Kelly, M. T., Petillo, P. J. and Binder, M., “A Safe, Portable,
Hydrogen Gas Generator Using Aqueous Borohydride Solution
and Ru Catalyst,” Int. J. Hydrogen. Energy., 25(10), 969-975(2000).
14. Mao, J. and Gregory, D. H., “Recent Advances in the Use of
Sodium Borohydride as a Solid State Hydrogen Store,” Energies,
8(1), 430-453(2015).
15. Liu, B. H. and Li, Z. P., “A Review: Hydrogen Generation from
Borohydride Hydrolysis Reaction,” J. Power Sources, 187(2),
527-534(2009).
16. Brack, P., Dann, S. E. and Wijayantha, K. U., “Heterogeneous
and Homogenous Catalysts for Hydrogen Generation by Hydrolysis
of Aqueous Sodium Borohydride (NaBH4) Solutions,”
Energy Science & Engineering, 3(3), 174-188(2015).
17. Kim, G. J. and Hwang, H. T., “Thermal Hydrolysis of Solid-state
Sodium Borohydride for Noncatalytic Hydrogen Generation,”
Chem. Eng. J., 424, 130445(2021).
18. Peng, Y., Zeng, H., Shi, Y., Xu, J., Xie, L., Cehn, J., Zheng, J.
and Li, X., “Oxalic Acid Promoted Hydrolysis of Sodium Borohydride
for Transition Metal Free Hydrogen Generation,” Journal
of Wuhan University of Technology-Mater. Sci. Ed., 35(6), 1011-
1015(2020).
19. Shin, S., Kim, Y., Jin, J. and Jung, J., “Heat-induced Dry Hydrolysis
of Sodium Borohydride/oxalic Acid Dihydrate Composite
for Hydrogen Production,” ACS Omega, 7(1), 979-986(2021).
20. Botasini, S. and Méndez, E., “On the Purity Assessment of Solid
Sodium Borohydride,” J. Power Sources, 197, 218-223(2012).
21. Mao, J., Gu, Q., Guo, Z. and Liu, H. K., “Sodium Borohydride
Hydrazinates: Synthesis, Crystal Structures, and Thermal Decomposition
Behavior,” Journal of Materials Chemistry A, 3(21),
11269-11276(2015).
22. Andrieux, J., Demirci, U. B., Hannauer, J., Gervais, C., Goutaudier,
C. and Miele, P., “Spontaneous Hydrolysis of Sodium Borohydride
in Harsh Conditions,” Int. J. Hydrogen. Energy., 36(1),
224-233(2011).
23. Muthuselvi, C., Arunkumar, A. and Rajaperumal, G., “Growth
and Characterization of Oxalic Acid Doped with Tryptophan Crystal
for Antimicrobial Activity,” Der Chemica Sinica, 7(4), 55-62
(2016).