ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2025 KICHE. All rights reserved

Overall

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 9, 2024
Revised September 24, 2024
Accepted October 11, 2024
Available online February 1, 2025
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Cited

2종 아민 상분리 흡수제에 의한 이산화탄소 포집에서의 상분리 특성 및 포집 성능

Phase Separation Characteristics and Capture Performance in Carbon Dioxide Capture by Blended Amine Absorbents

한국교통대학교 화공생물공학과 1한국교통대학교 교통·에너지융합학과 2현대자동차그룹 그린에너지소재연구팀
Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, Chungbuk, 27469, Korea 1Department of IT·Energy Convergence, Korea National University of Transportation, Chungju, Chungbuk, 27469, Korea 2Green Energy Materials Research Team, Hyundai Motor Group, 37 Cheoldobangmulgwan-ro, Uiwang, Gyeonggi-do, 16082, Korea
hongyk@ut.ac.kr
Korean Chemical Engineering Research, February 2025, 63(1), 72-79(8)
https://doi.org/10.9713/kcer.2025.63.1.72
downloadDownload PDF

Abstract

CO2 포집을 위한 흡수 공정에서의 흡수제 재생에너지를 줄이기 위해 본 연구에서는 CO2와 반응하여 주 흡수제 역

할을 하는 1차 및 2차 아민과 상분리를 유도하는 부 흡수제 역할인 3차 아민을 도입한 2종 아민 상분리 흡수제를 제

안하였다. CO2 흡수 전과 후 흡수제의 혼화도에 따라 흡수제를 3가지 유형으로 분류하고 이를 옥탄올-물 분배계수

(logP)를 이용하여 해석하였다. 3차 아민의 logP 값이 0보다 작은 경우 단일 상으로 존재하고, 3차 아민의 logP 값이

0보다 큰 경우에는 CO2 흡수 전에는 단일 상을 형성하지만, CO2 흡수 후에는 흡수제와의 반응으로 생성된 카바메이

트의 용해도 제한으로 인해 액-액 상분리가 발생하였다. CO2 농축효과와 흡수 평형에 도달하는 속도를 고려하여 CO2

흡수 후에 상분리가 발생하는 2종 아민 상분리 흡수제로 MAPA(3-(methylamino)propylamine)/TMPDA(N,N,N',N'-

tetramethyl-1,3-propanediamine)와 AEEA(2-(2-aminoethylamino)ethanol)/TMPDA (N,N,N',N'-tetramethyl-1,3-propanediamine)

흡수제를 선정하였고 이들 흡수제의 하부상의 로딩값은 각각 220 gCO2/Lsolvent, 274 gCO2/Lsolvent로 30 wt% MEA

흡수제의 로딩값의 약 2배 이상을 보였다.

In this study, to reduce the regeneration energy of absorbents in the CO2 capture process, a two-component

amine phase-separation absorbent was proposed, incorporating primary and secondary amines, which serve as the main

absorbents reacting with CO2, and tertiary amines, which function as auxiliary absorbents inducing phase separation.

The absorbents were classified into three types based on their miscibility before and after CO2 absorption, and this was

analyzed using the octanol-water partition coefficient (logP). When the logP value of the tertiary amine is less than 0, it

exists as a single phase. When the logP value is greater than 0, it forms a single phase before CO2 absorption, but after

CO2 absorption, liquid-liquid phase separation occurs due to the limited solubility of the carbamate, a reaction product

formed with the absorbent. Considering the CO2 concentration effect and the rate of reaching absorption equilibrium,

two types of two-component amine phase-separation absorbents, MAPA(3-(methylamino)propylamine)/TMPDA

(N,N,N',N'-tetramethyl–1,3-propanediamine) and AEEA(2-2-aminoethylamino)ethanol)/TMPDA(N,N,N',N'-tetramethyl-1,3-

propanediamine) were selected. The loading values of the lower phase in these absorbents were 220 gCO2/Lsolvent and

274 gCO2/Lsolvent, respectively, which were more than twice the loading value of the 30 wt% MEA absorbent.

References

1. Gautam, A. and Mondal, M. K.. “Review of Recent Trends and
Various Techniques for CO2 Capture: Special Emphasis on
Biphasic Amine Solvents,” Fuel, 334, 126616(2023).
2. Li, X., Wang, S. and Chen, C. “Experimental and Rate-based
Modeling Study of CO2 Capture by Aqueous Monoethanol Amine,”
Greenhouse Gases Sci. Technol., 4, 495-508(2014).
3. Lee, J., Hong, Y. K., and You, J. K., “Phase Separation Characteristics
in Biphasic Solvents Based on Mutually Miscible Amines
for Energy Efficient CO2 Capture,” Korean J. Chem. Eng., 34,
1840-1845(2017).
4. You, J. K., Lee, H. Y. and Hong, Y. K., “Effect of 1-Methylimidazole
on CO2 Absorption by Diethylenetriamine Aqueous Solutions,”
Chem. Eng. Technol., 40, 2238-2242(2017).
5. Mathias, P. M., Zheng, F., Heldebrant, D. J., Zwoster, A., Whyatt, G.,
Freeman, C. J., Bearden, M. D. and Koech, P., “Measuring the
Absorption Rate of CO2 in Nonaqueous CO2-Binding Organic Liquid
Solvents with a Wetted-Wall Apparatus,” ChemSusChem., 8,
3617-3625(2015).
6. Heldebrant, D. J., Yonker, C. R., Jessop, P. G. and Phan, L., “Organic
Liquid CO2 Capture Agents with High Gravimetric CO2 Capacity,”
Energy Environ. Sci., 1, 487-493(2008).
7. Li, X., Wang, Y., Lu, H., Zhong, S., Liu, C., Song, L., Tang, S.
and Liang, B., “Phase Splitting Rules of the Primary/Secondary
Amine-Tertiary Amine Systems: Experimental Rapid Screening
and Corrected Quasi-Activity Coefficient Model,” Ind. Eng. Chem.
Res., 61, 7709-7717(2022).
8. Zhang, J., Qiao, Y. and Agar, D. W., “Intensification of Low Temperature
Thermomorphic Bphasic Amine Solvent Regeneration
for CO2 Capture,” Chem. Eng. Res. Des., 90, 743-749(2012).
9. Zhang, S., Shen, Y., Shao, P., Chen, J. and Wang, L., “Kinitics,
Thermodynamics, and Mechanism of a Novel Biphasic Solvent
for CO2 Capture from Flue Gas,” Environ. Sci. Technol. 52, 3660-
3668(2018).
10. Liu, F., Rochelle, G. T., Wang, T., Chen, E. and Fang, M., “CO2
Absorption Rate in Biphasic Solvent of Aminoethylethanol Amine
and diethylethanolamine,” Chem. Eng. J., 404, 126503(2021).
11. Ye, Q., Lu, H., Zhang, S., Wang, X. and Lu, Y., “Experimental
Investigation of the Absorption, Phase Transition, and Desorption
Behavior of Biphasic Solvent Blends for Postcombustion CO2
Capture,” Energy Procedia, 114, 813-822(2017).
12. Wang, Y., Zhu, K., Zhao, S., Cao, J., Li, W. and Gu, Y., “Research
on CO2 Capture Performance and Absorption Mechanism of
High-Load Biphasic Solvent TETA/1DMA2P,” Ind. Eng. Chem.
Res., 61, 9813-9820(2022).
13. Liu, F., Fang, M., Yi, N. and Wang, T., “Research on Alkanol
amine-Based Physical-Chemical Solutions as Biphasic Solvents
for CO2 Capture,” Energy Fuels, 33, 11389-11398(2019).
14. Luo, W., Guo, D., Zheng, J., Gao, S. and Chen, J., “CO2 absorption
Using Biphasic Solvent: Blends of Diethylenetriamine, Sulfolane,
and Water,” Int. J. Greenh. Gas Control, 53, 141-148(2016).
15. Lv, B., Zhou, X., Zhou, Z. and Jing, G., “Kinitics and Thermodynamics
of CO2 Absorption into a Novel DETA-AMP-PMDETA
Biphasic Solvent,” ACS Sustainable Chem. Eng., 7, 13400-13410
(2019).
16. Zhao, X., Li, X., Lu, H., Yue, H., Liu, C., Zhong, S., Tang, S. and
Liang, B., “Predicting Phase-Splitting Behaviors of an Amine-
Organic Solvent–Water System for CO2 Absorption: A New Model
Developed by Density Functional Theory and Statistical and Experimental
Methods,” Chem. Eng. J., 422, 130389 (2021).
17. Shen, Y., Jiang, C., Zhang, S., Chen, J., Wang, L. and Chen, J.,
“Biphasic solvent for CO2 capture: Amine Property-Performance
and Heat Duty Relationship,” Appl. Energy., 230, 726-733(2018).
18. Machida, H., Ando, R., Esaki, T., Yamaguchi, T., Horizoe, H.,
Kishimoto, A., Akiyama, K. and Nishimura, M., “Low Temperature
Swing Process for CO2 Absorption-Desorption Using Phase
Separation CO2 Capture Solvent,” Int. J. Greenh. Gas Control.,
75, 1-7(2018).
19. Lee, H. Y., Seok, C. H. and Hong, Y. K., “Effect of Isopropanol
on CO2 Absorption by Diethylenetriamine Aqueous Solution,”
Clean Technol., 27, 255-260(2021).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로