Overall
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 28, 2024
Revised November 6, 2024
Accepted November 7, 2024
Available online February 1, 2025
-
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Most Cited
GREET 모델을 활용한 블루수소의 Scope 1,2,3 온실가스 배출량 분석
Analysis of Scope 1, 2, and 3 GHG Emissions for Blue Hydrogen Using the GREET Model
https://doi.org/10.9713/kcer.2025.63.1.99

Abstract
본 연구는 저탄소 수소 생산 방식인 Blue 수소의 온실가스 배출량을 전과정평가 관점에서 분석하였다. 특히, Scope
1, 2뿐만 아니라 Scope 3 배출량을 포함하여 종합적으로 평가하였다. 미국 Argonne 국립 연구소에서 개발한 GREET
모델을 활용하여 Blue 수소 생산 과정에서 발생하는 온실가스 배출량을 산정하였으며, 한국의 국가 특수성을 고려하
여 다양한 원료 수입 시나리오를 설정하고 분석하였다. 연구 결과, Scope 3 배출량이 전체 온실가스 배출량의 상당 부
분을 차지하는 것으로 나타났으며, 특히 원료 채굴 및 가공 과정에서 발생하는 배출량이 큰 비중을 차지하였다. 또한,
수소의 저장 및 운송 방식에 따라 배출량의 차이가 있음을 확인하였다. 본 연구는 Blue 수소 생산의 전과정에서 발생
하는 온실가스 배출량을 종합적으로 분석함으로써, 향후 저탄소 수소 경제 실현을 위한 정책 수립 및 기업의 탄소 중
립 전략 수립에 필요한 기초 자료를 제공할 것으로 기대된다.
This study comprehensively analyzes the greenhouse gas (GHG) emissions of blue hydrogen production
from a life cycle assessment perspective, incorporating not only Scope 1 and 2 but also Scope 3 emissions. Utilizing the
GREET model developed by Argonne National Laboratory, we estimated the GHG emissions throughout the blue
hydrogen production process. Various raw material import scenarios were established and analyzed, considering South
Korea's specific national circumstances. The results indicate that Scope 3 emissions account for a significant portion of
the total GHG emissions, with the extraction and processing of raw materials contributing substantially. Furthermore, the
study reveals variations in emissions depending on hydrogen storage and transportation methods. This research provides
a comprehensive analysis of GHG emissions across the entire life cycle of blue hydrogen production, offering valuable
insights for policymakers and companies in developing strategies for achieving a low-carbon hydrogen economy and
carbon neutrality goals.
References
Climate Change—A Review,” Energy Policy, 52, 797-
809(2013).
2. Lee, W. S., Kim, Y., Shinn, Y., Wang, J., Moon, B., Park, H.,
Chang, S. and Kwon, O., “Role of Blue Hydrogen for Developing
National Hydrogen Supply Infrastructure,” Journal of the
Korean Society of Mineral and Energy Resources Engineers,
58(5), 503-520(2021).
3. Jonas Sonnenschein, Luis Mundaca, “Decarbonization Under
Green Growth Strategies?,” The case of South Korea, 123, 180-
193(2016).
4. George E. Halkos, Eleni-Christina Gkampoura, Reviewing Usage,
Potentials, and Limitations of Renewable Energy Sources, Energies,
13(11), 2906(2020).
5. Hermesmann, M., Muller, T. E. and Turquoise, G., “Blue, or
Grey? Environmentally friendly Hydrogen Production in Transforming
Energy Systems,” Progress in Energy and Combustion
Science, 90(100996), (2022).
6. Park, H. S., An, J. W., Lee, H. E., Park, H. J., Oh, S. S., Ling, J.
L. J. and Lee, S. H., “Scenario Analysis, Technology Assessment,
and Policy Review for Achieving Carbon Neutrality in the Energy
Sector,” Korean Chem. Eng. Res., 61(4), 496-504(2023).
7. Koo, B. and Jung, S. P., “Trends and Perspectives of Microbial
Electrolysis Cell Technology for Ultimate Green Hydrogen Production,”
Journal of Korean Society of Environmental Engineers,
44(10), 383-396(2022).
8. IEA, Global Hydrogen Review 2023, 1-176(2023).
9. South Korea’s 2050 carbon neutrality policy, East Asian Policy,
13(01), 33-46(2021).
10. Hydrogen Council, Path to hydrogen competitiveness A cost
perspective, 1-79(2020).
11. Troy Srangarone, South Korean efforts to transition to a hydrogen
economy, Clean Technologies and Environmental Policy, 23, 509-
516(2021).
12. Jeong, W. C., Lee, D. H., Roh, J. H. and Park, J. B., “Scenario
Analysis of the GHG Emissions in the Electricity Sector Through
2030 in South Korea Considering Updated NDC,” Energies,
15(9), 3310(2022).
13. Glaveli, N., Alexiou, M., Maragos, A., Daskalopoulou, A. and
Voulgari, V., “Assessing the Maturity of Sustainable Business
Model and Strategy Reporting Under the CSRD Shadow,” Journal
of Risk and Financial Management, 16(10), 445(2023).
14. Greenhouse Gas Protocol, Technical Guidance for Calculating
Scope 3 Emissions (version 1.0), 1-182(2013).
15. Patchell, J., “Can the Implications of the GHG Protocol's Scope
3 Standard be Realized?,” Journal of Cleaner Production, 185,
941-958(2018).
16. Three-scope Carbon Emission Inventories of Global Cities,
Journal of Industrial Ecology, 25(3), 735-750(2021).
17. Lloyd, S. M., Hadziosmanovic, M., Rahimi, K., Rich, D., Bhatia,
P., Trends Show Companies Are Ready for Scope 3 Reporting
with U.S. Climate Disclosure Rule, World Resources Institute,
(2022).
18. Howarth, R. W. and Jacobson, M. Z., “How Green is Blue Hydrogen?,”
Energy Science & Engineering, 9(10), 1676-1689(2021).
19. Han, J.-R., Park, J., Kim, Y., Lee, Y. C. and Kim, H. S., “Analysis
of CO2 Emission Depending on Hydrogen Production Methods
in Korea,” Journal of the Korean Institute of Gas, 23(2), 1-8
(2019).
20. Kim, A., Choe, C., Cheon, S., Lim, H., “Economic and Environmental
Impact Analyses on Supply Chains for Importing Clean
Hydrogen from Australia in the Republic of Korea,” Trans. of the
Korean Hydrogen and New Energy Society, 33, 623-635(2022).
21. On the climate impacts of blue hydrogen production, Sustainable
Energy & Fuels, 6(1), 66-75(2022).
22. National Energy Technology Laboratory, Comparison of Commercial,
State-of-the-Art, Fossil-Based Hydrogen Production
Technologies, 1-327(2022).
23. Scenario-based techno-economic analysis of steam methane
reforming process for hydrogen production”, Applied Sciences,
11, 6021(2021).
24. A system-level analysis for long-distance hydrogen transport
using liquid organic hydrogen carrier (LOHC): a case study in
the Australia-Korea, ACS Sustainable Chemistry & Engineering,
12(23), 8630-8641(2024).
25. GHG Protocol, A Corporate Accounting and Reporting Standard
Revised Edition, 1-116.
26. Oh, S. J., Heo, C., Park, M. S. and Ahn, C. B., A Study on the
Scope 3 Carbon Emission Calculation Boundaries of Construction
Companies, 40(2), 251-259(2023).
27. https://www.kogas.or.kr/site/koGas/main.
28. https://www.law.go.kr/admRulLsInfoP.do?admRulId=26196&efYd=
0#J2708241.
29. Argonne national Laboratory, Well-to-Wheels Analysis of Landfill
Gas-Based Pathways and Their Addition to the GREET Model,
1-65(2010).
30. Unveiling the environmental gains of biodegradable plastics inthe waste treatment phase: A cradle-to-crave life cycle assessment,”
Chemical Engineering Journal, 487, 150540(2024).
31. Comparative life cycle assessment for the sustainable production
of fermentation-based L-methionine, Journal of Cleaner Production,
462, 142700(2024).
32. Hermesmann, M. and Müller, T. E., “Green, Turquoise, Blue, or
Grey? Environmentally friendly Hydrogen Production in Transforming
Energy Systems,” Progress in Energy and Combustion
Science, 90, 100996(2022).
33. Edgar G Hertwich, Richard Wood, “The Growing Importance of
Scope 3 Greenhouse gas Emissions from Industry,” Environmental
Research Letters, 13(10), 104013(2018).