Overall
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 11, 2017
Accepted August 4, 2017
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
Most Downloaded
메탄으로부터 촉매와 유전체 장벽 방전 반응기를 활용한 C2 화합물의 합성
Synthesis of C2 Chemicals from Methane in a Dielectric Barrier Discharge (DBD) Plasma Bed
서강대학교 화공생명공학과, 04107 서울특별시 마포구 백범로 35
Chemical Biomolecular Engineering, Sogang University, 35, Baekbeom-ro, Mapo-gu, Seoul, 04107, Korea
philoseus@sogang.ac.kr
Korean Chemical Engineering Research, February 2018, 56(1), 125-132(8), 10.9713/kcer.2018.56.1.125 Epub 2 February 2018
Download PDF
Abstract
유전체 장벽 방전 반응기에서 규칙적인 메조기공 갖는 촉매를 사용하여 플라즈마 에너지를 이용한 메탄의 직접전환 반응 연구를 수행하였다. 촉매는 MgO/OMA (ordered mesoporous alumina), MgO/γ-Al2O3와 MgO/α-Al2O3를 사용하여 반응하였다. Pulse 고전압을 이용한 플라즈마 반응기에서 촉매 MgO/OMA를 사용하였을 때 C2 화합물의 선택도는 67%로 최고의 성능을 나타내었다. 금속산화물 종류, 규칙적인 메조기공 구조, 알루미나의 상변화 그리고 전원공급방식에 따른 효과를 고려하여 반응기 성능 및 생성물 분포를 비교하였다. BET (Brunauer, Emmett, Teller), X 선 회절, 주사전자현미경, 열 무게 분석으로 촉매의 반응 전후의 특성을 분석하였다.
The direct synthesis of C2 chemical directly from methane was studied by employing catalysts with ordered mesopores in a dielectric barrier discharge plasma reactor. The reaction was carried out using MgO/OMA (ordered mesoporous alumina), MgO/γ-Al2O3 and MgO/α-Al2O3 as catalysts. When MgO/OMA was applied, it showed excellent performance in the plasma reactor using pulse-type power supply and the selectivity of C2 chemicals was measured as 67%. The effects of metal oxide type, textural property of support, alumina phase and power supply type on catalytic performance were investigated especially in terms of C2 chemical formation. BET (Brunauer, Emmett, Teller), X-ray diffraction, transmission electron microscope and thermogravimetric analysis were used to investigate the characterization of the catalyst before and after the reaction.
References
Wood DA, Nwaoha C, Towler BF, J. Natural Gas Science Engineering, 9, 196 (2012)
Taifan W, Baltrusaitis J, Appl. Catal. B: Environ., 198, 525 (2016)
Howarth RW, Santoro R, Ingraffea A, Climatic Change, 106(4), 679 (2011)
Behroozsarand A, Zamaniyan A, J. Clean Prod., 142, 2315 (2017)
Parshall GW, J. Mol. Catal., 4(4), 243 (1978)
Martinez M, Michelin MD, Rivalta I, Russo N, Sicilia E, Inorg. Chem., 44(26), 9807 (2005)
Hutchings GJ, Scurrell MS, Woodhouse JR, Chem. Soc. Rev., 18, 251 (1989)
Lunsford JH, Angew. Chem.-Int. Edit., 34(9), 970 (1995)
Xu YD, Lin LW, Appl. Catal. A: Gen., 188(1-2), 53 (1999)
Guo A, Wu C, He P, Luan Y, Zhao L, Shan W, Cheng W, Song H, Catal. Science Technology, 6(4), 1201 (2016)
Kasinathan P, Park S, Choi WC, Hwang YK, Chang JS, Park YK, Plasma Chem. Plasma Process., 34(6), 1317 (2014)
Pietruszka B, Heintze M, Catal. Today, 90(1-2), 151 (2004)
Istadi, Amin NAS, Fuel, 85(5-6), 577 (2006)
Morris SM, Fulvio PF, Jaroniec M, J. American Chem. Soc., 130(45), 15210 (2008)
Yuan Q, Yin AX, Luo C, Sun LD, Zhang YW, Duan WT, Liu HC, Yan CH, J. American Chemical Society, 130(11), 3465 (2008)
Ashpis D, Laun M, Griebeler E, 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (American Institute of Aeronautics and Astronautics, 2012).
Lee HW, Ryu SG, Park MK, Park HB, Hwang KC, Korean J. Chem. Eng., 41(3), 368 (2003)
Hooshmand N, Rahimpour MR, Jahanmiri A, Taghvaei H, Shirazi MM, Ind. Engineering Chemistry Research, 52(12), 4443 (2013)
Khalifeh O, Mosallanejad A, Taghvaei H, Rahimpour MR, Shariati A, Appl. Energy, 169, 585 (2016)
Rajendran M, Bhattacharya AK, Mater. Lett., 39(3), 188 (1999)
Korf SJ, Roos JA, Veltman LJ, Ommen JG, Ross JRH, Appl. Catal., 56(1), 119 (1989)
Koo KY, Roh HS, Seo YT, Seo DJ, Yoon WL, Bin Park S, Appl. Catal. A: Gen., 340(2), 183 (2008)
Taifan W, Baltrusaitis J, Appl. Catal. B: Environ., 198, 525 (2016)
Howarth RW, Santoro R, Ingraffea A, Climatic Change, 106(4), 679 (2011)
Behroozsarand A, Zamaniyan A, J. Clean Prod., 142, 2315 (2017)
Parshall GW, J. Mol. Catal., 4(4), 243 (1978)
Martinez M, Michelin MD, Rivalta I, Russo N, Sicilia E, Inorg. Chem., 44(26), 9807 (2005)
Hutchings GJ, Scurrell MS, Woodhouse JR, Chem. Soc. Rev., 18, 251 (1989)
Lunsford JH, Angew. Chem.-Int. Edit., 34(9), 970 (1995)
Xu YD, Lin LW, Appl. Catal. A: Gen., 188(1-2), 53 (1999)
Guo A, Wu C, He P, Luan Y, Zhao L, Shan W, Cheng W, Song H, Catal. Science Technology, 6(4), 1201 (2016)
Kasinathan P, Park S, Choi WC, Hwang YK, Chang JS, Park YK, Plasma Chem. Plasma Process., 34(6), 1317 (2014)
Pietruszka B, Heintze M, Catal. Today, 90(1-2), 151 (2004)
Istadi, Amin NAS, Fuel, 85(5-6), 577 (2006)
Morris SM, Fulvio PF, Jaroniec M, J. American Chem. Soc., 130(45), 15210 (2008)
Yuan Q, Yin AX, Luo C, Sun LD, Zhang YW, Duan WT, Liu HC, Yan CH, J. American Chemical Society, 130(11), 3465 (2008)
Ashpis D, Laun M, Griebeler E, 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (American Institute of Aeronautics and Astronautics, 2012).
Lee HW, Ryu SG, Park MK, Park HB, Hwang KC, Korean J. Chem. Eng., 41(3), 368 (2003)
Hooshmand N, Rahimpour MR, Jahanmiri A, Taghvaei H, Shirazi MM, Ind. Engineering Chemistry Research, 52(12), 4443 (2013)
Khalifeh O, Mosallanejad A, Taghvaei H, Rahimpour MR, Shariati A, Appl. Energy, 169, 585 (2016)
Rajendran M, Bhattacharya AK, Mater. Lett., 39(3), 188 (1999)
Korf SJ, Roos JA, Veltman LJ, Ommen JG, Ross JRH, Appl. Catal., 56(1), 119 (1989)
Koo KY, Roh HS, Seo YT, Seo DJ, Yoon WL, Bin Park S, Appl. Catal. A: Gen., 340(2), 183 (2008)