Overall
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 31, 2022
Accepted June 20, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
Most Downloaded
XRD 피크 면적을 이용한 탄산칼슘 결정 형태의 정량분석
Quntitative Analysis of Calcium Carbonate Polymorphs by Peak Area of XRD
경상국립대학교 화학공학과, 52828 경남 진주시 진주대로 501
Department of Chemical Engineering, Engineering Research Institute, Gyeongsang National University, 501 Jinju-daero Jinju, 52828, Korea
Korean Chemical Engineering Research, November 2022, 60(4), 564-573(10), 10.9713/kcer.2022.60.4.564 Epub 2 November 2022
Download PDF
Abstract
탄산칼슘은 반응 초기 무정형의 탄산칼슘 ACC (amorphous calcium carbonate)에서 calcite, aragonite, vaterite의 세 가지 결정 형태로 변한다. 결정구조의 차이에 따라 물성이 달라지고, 이들 특성을 활용하여 다양한 분야에 응용이 가능하다. 따라서 단일 결정 구조를 가진 탄산칼슘 입자의 생성에 관한 연구가 활발히 진행되고 있다. 본 연구에서는 XRD 피크 면적을 이용한 탄산칼슘의 결정 형태별 정량분석이 이루어졌다. 순수한 vaterite와 aragonite 결정이 합성되고 이들 표준 시료의 XRD 피크 분포가 분석되었다. Calcite와 vaterite 표준 시료를 혼합 한 시료에 대한 피크 강도를 기준으로 한 경우와 피크 총면적을 기준으로 한 정량분석 값이 비교되었다. fsV (vaterite 전체 피크 면적 기준 보정계수) 평균값은 0.654로 구해졌다. Calcite와 aragonite 표준 시료를 혼합한 시료에 대한 피크 총면적을 기준으로 한 정량분석에서 fsA (aragonite 전체 피크 면적 기준 보정계수) 평균값은 0.6713로 구하여졌다. 이들 보정계수를 적용하여 탄산 칼슘 세 가지 결정에 대한 XRD 피크 총 면적을 기준으로 한 정량분석식 Eq. (24)~Eq. (32)이 제안되었고, 각 결정 사이의 중복 구간을 고려한 세 가지 결정에 대한 diffraction angle 구간 범위를 정하였다. 세 가지 표준 시료를 혼합한 시료에 대하여 XRD 분석을 하고 피크 면적 기준 정량분석치와 피크 높이 기준 분석치를 비교하였다.
Calcium carbonate (CaCO3) exhibits three polymorphs: calcite with arhombohedral, vaterite with a spherical, and aragonite with a needle-like structure. Qualitative and quantitative analyses of the morphology of CaCO3 are very important to investigate the synthesis of single-crystal vaterite and aragonite. In this work, the polymorphs of calcium carbonate were quantitatively analyzed using XRD. Pure vaterite and pure aragonite were synthesized and the peak distribution of a single phase was analyzed. The vaterite fraction of a mixture of calcite and vaterite was calculated based on the intensity of a specific diffraction peak, and compared to the results based on the peak area. The mean value of fsV (the correction factor for the peak area of vaterite) was 0.654. The phase analysis of calcite-aragonite mixtures was performed, and the mean value of fsA (the correction factor for the peak area of aragonite) was obtained as 0.6713. Using these factors, Eq. (24)~Eq. (32) for the quantitative analysis based on the total peak area of XRD were derived to calculate the phase contents of ternary phase CaCO3. And three-component XRD section was defined considering overlapping sections.
References
Naka K, Top Curr. Chem., 271, 119 (2007)
Son M, Kim G, Han K, Lee MW, Lim JT, Korean Chem. Eng. Res., 55(2), 141 (2017)
Rao MS, Bull. Chem. Soc. Jpn., 46, 1414 (1973)
Dupont L, Portemer F, Figlarz M, J. Mater. Chem., 7(5), 797 (1997)
Xie AJ, Shen YH, Zheng CY, Yuan ZW, Zhu XM, Yang YM, J. Cryst. Growth, 285, 436 (2005)
Kim JH, Kim JM, Kim WS, Kim IH, Korean Chem. Eng. Res., 47(2), 213 (2009)
Kim JH, Song SM, Kim JM, Kim WS, Kim IH, Korean J. Chem. Eng., 27(5), 1532 (2010)
Song SM, Seong BI, Koo JH, Kim IH, Korean Chem. Eng. Res., 49(1), 109 (2011)
Vagenas NV, Gatsouli A, Kontoyannis CG, Talanta, 59, 831 (2003)
Hakanen E, Koskikallio J, Finn. Chem. Lett., 34 (1982)
Loftus E, Rogers K, Lee-Thorp J, J. Quaternary Sci., 30(8), 731 (2015)
Han HK, Jeon JS, Kim MS, Korean Chem. Eng. Res., 50(2), 300 (2012)
Park WK, Ko SJ, Lee SW, Cho KH, Ahn JW, Han C, J. Cryst. Growth, 310, 2593 (2008)
Ahn JW, Kim JH, Park HS, Kim JA, Han C, Kim H, Korean Chem. Eng. Res., 22(6), 852 (2005)
Kontoyannis C, Vagenas NV, Analyst, 125, 251 (2000)
Lyu SG, Ryu SO, Park YH, Rhew JH, Sur GS, Korean Chem. Eng. Res., 36(4), 543 (1998)
Bak YC, Korean Chem. Eng. Res., 59(1), 118 (2021)
Moon DH, Murnandari A, Salawu O, Lee CW, Lee WH, Kim YE, Park KT, Lee JE, Eo J, Jeong SK, Youn MH, Korean J. Chem. Eng., 37(10), 1709 (2020)
Lyu SG, Ryu SO, Park YH, Sur GS, Korean Chem. Eng. Res., 36(2), 262 (1998)
Rao MS, Yoganarasimhan SR, Am. Min., 50, 1489 (1965)
Wada N, Okazaki M, Tachikawa S, J. Cryst. Growth, 132, 115 (1993)
Son M, Kim G, Han K, Lee MW, Lim JT, Korean Chem. Eng. Res., 55(2), 141 (2017)
Rao MS, Bull. Chem. Soc. Jpn., 46, 1414 (1973)
Dupont L, Portemer F, Figlarz M, J. Mater. Chem., 7(5), 797 (1997)
Xie AJ, Shen YH, Zheng CY, Yuan ZW, Zhu XM, Yang YM, J. Cryst. Growth, 285, 436 (2005)
Kim JH, Kim JM, Kim WS, Kim IH, Korean Chem. Eng. Res., 47(2), 213 (2009)
Kim JH, Song SM, Kim JM, Kim WS, Kim IH, Korean J. Chem. Eng., 27(5), 1532 (2010)
Song SM, Seong BI, Koo JH, Kim IH, Korean Chem. Eng. Res., 49(1), 109 (2011)
Vagenas NV, Gatsouli A, Kontoyannis CG, Talanta, 59, 831 (2003)
Hakanen E, Koskikallio J, Finn. Chem. Lett., 34 (1982)
Loftus E, Rogers K, Lee-Thorp J, J. Quaternary Sci., 30(8), 731 (2015)
Han HK, Jeon JS, Kim MS, Korean Chem. Eng. Res., 50(2), 300 (2012)
Park WK, Ko SJ, Lee SW, Cho KH, Ahn JW, Han C, J. Cryst. Growth, 310, 2593 (2008)
Ahn JW, Kim JH, Park HS, Kim JA, Han C, Kim H, Korean Chem. Eng. Res., 22(6), 852 (2005)
Kontoyannis C, Vagenas NV, Analyst, 125, 251 (2000)
Lyu SG, Ryu SO, Park YH, Rhew JH, Sur GS, Korean Chem. Eng. Res., 36(4), 543 (1998)
Bak YC, Korean Chem. Eng. Res., 59(1), 118 (2021)
Moon DH, Murnandari A, Salawu O, Lee CW, Lee WH, Kim YE, Park KT, Lee JE, Eo J, Jeong SK, Youn MH, Korean J. Chem. Eng., 37(10), 1709 (2020)
Lyu SG, Ryu SO, Park YH, Sur GS, Korean Chem. Eng. Res., 36(2), 262 (1998)
Rao MS, Yoganarasimhan SR, Am. Min., 50, 1489 (1965)
Wada N, Okazaki M, Tachikawa S, J. Cryst. Growth, 132, 115 (1993)