Overall
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 7, 2022
Accepted October 31, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
Most Downloaded
산화구리 나노입자가 분산된 CNT fiber 유연 전극 기반의 글루코스 검출용 비효소적 전기화학센서
Electrochemical Sensor for Non-Enzymatic Glucose Detection Based on Flexible CNT Fiber Electrode Dispersed with CuO Nanoparticles
서경대학교 나노융합공학과, 02713 서울시 성북구 서경로 124
Department of Nano Convergence Engineering, Seokyeong University, 124 Seokyeong-ro, Sungbuk-gu, Seoul, 02713, Korea
mjsong@skuniv.ac.kr
Korean Chemical Engineering Research, February 2023, 61(1), 52-57(6), 10.9713/kcer.2023.61.1.52 Epub 26 January 2023
Download PDF
Abstract
본 연구는 고성능 유연 전극 소재 개발을 위한 기초 연구로, 유연 전극 소재의 성능을 향상시키기 위해 금속 산화물 CuO nanoparticles (CuO NPs)를 도입하여 탄소나노튜브 섬유(carbon nanotube fiber; CNT fiber) 표면 위에 전기화학 적 증착시켜 CNT fiber/CuO NPs 전극을 합성하고, 이를 전기화학적 비효소 글루코스 센서에 적용하였다. 이 전극의 표면 및 elemental composition 분석은 주사전자 현미경(SEM)과 에너지분산형 분광분석법(EDS)을 이용하였으며, 전 극의 전기화학적 특성 및 글루코스에 대한 센싱 성능은 순환전압 전류법(CV)과 전기화학 임피던스법(EIS), 시간대전 류법(CA)을 통해 조사되었다. CNT fiber/CuO NPs 전극은 CNT fiber의 우수한 특성과 함께 CuO NPs 도입에 따른 약 2.6배의 유효 전극면적(active surface area) 증가 효과와 11배 정도의 향상된 전자전달(electron transfer) 특성 및 우수 한 전기적 촉매 활성(electrocatalytic activity) 덕분에 CNT fiber 유연 기반 전극의 글루코스 검출에 대한 성능이 개선 되었다. 따라서, 본 연구를 기반으로 다양한 나노구조체를 활용한 고성능 유연 전극 소재 개발이 기대된다.
This study is a basic research for the development of high performance flexible electrode material. To enhance its electrochemical property, CuO nanoparticles (CuO NPs) were introduced and dispersed on surface of CNT fiber through electrochemical deposition method. The CNT fiber/CuO NPs electrode was fabricated and applied to electrochemical non-enzymatic glucose sensor. Surface morphology and elemental composition of the CNT fiber/CuO NPs electrode was characterized by scanning electron microscope (SEM) with energy dispersive X-ray spectrometry (EDS). And its electrochemical characteristics were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. The CNT fiber/CuO NPs electrode exhibited the good sensing performance for glucose detection such as high sensitivity, wide linear range, low detection limit and good selectivity due to synergetic effect of CNT fiber and CuO NPs. Based on the unique property of CNT fiber, CuO NPs were provide large surface area, enhanced electrocatalytic activity, efficient electron transport property. Therefore, it is expected to develop high performance flexible electrode materials using various nanomaterials.
References
Ghanbari K, Babaei Z, Anal. Biochem., 498, 37 (2016)
Jagadeesan MS, Movlaee K, Krishnakumar T, Leonardi SG, Neri G, J. Electroananl. Chem., 835, 161 (2019)
Yang J, Jiang LC, Zhang WD, Gunasekaran S, Talanta, 82, 25 (2010)
Rong LQ, Yang C, Qian QY, Xia XH, Talanta, 72, 819 (2007)
Dilmac Y, Guler M, J. Electroanal. Chem., 864, 114091 (2020)
Ye JS, Chen CW, Lee CL, Sens. Actuators B-Chem., 208, 569 (2015)
Liu Y, Teng H, Hou H, You T, Biosens. Bioelectron., 24, 3329 (2009)
Ahmad R, Khan M, Tripathy N, Khan MR, Khosla A, J. Electrochem. Soc., 167, 107504 (2020)
Song MJ, Lee SK, Kim JH, Lim DS, J. Electrochem. Soc., 160, B43 (2013)
Sattarahmady N, Heli H, J. Exp. Nanosci., 7, 529 (2012)
Dayakar T, Venkateswara RK, Bikshalu K, Rajendar V, Park SH, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 75, 1472 (2017)
Kailasa S, Geeta B, Jayarambabu N, Reddy RKK, Sharma S, Rao KV, Mater. Lett., 245, 118 (2019)
Marimuthu T, Mohamad S, Alias Y, Synth. Met., 207, 35 (2015)
Song J, Xu L, Zhou C, Xing R, Dai Q, Liu D, Song H, ACS Appl. Mater. Interfaces, 5, 12928 (2013)
Liu Y, Sun G, Jiang C, Zheng XT, Zheng L, Li CM, Microchim. Acta, 181, 63 (2014)
Wang, Joseph, Deo RP, Poulin P, Mangey M, J. Am. Chem. Soc., 125, 14706 (2003)
Jiangtao D, Zhang X, Yong Z, Zhang Y, Li D, Li R, Li Q, Adv. Mater., 28, 10529 (2016)
Jung C, Liu W, Hao H, Wang H, Meng F, Lau D, Nanoscale, 12, 16305 (2020)
Cho SY, Yu H, Choi J, Kang H, Park S, Jang JS, Hong HJ, Kim ID, Lee SK, Jeong HS, Jung HT, ACS Nano, 13, 9332 (2019)
Miao XM, Yuan R, Chai YQ, Shi YT, Yuan YY, J. Electoanal. Chem., 612, 157 (2008)
Yoon SS, Ramadoss A, J. Electroanal. Chem., 717-718, 90 (2014)
Singh B, Bhatia V, Jain VK, Sens. Transducers, 146, 69 (2012)
Teo WZ, Ambrosi A, Pumera M, Electrochem. Commun., 28, 51 (2013)
Bard AJ, Faulkner LR, Electrochemical Methods: Fundamentals and Applications, 2nd ed., John Wiley and Sons, New York(1980).
Upadhyay S, Rao GR, Sharma MK, Bhattacharya BK, Rao VK, Vijayaraghavan R, Biosens. Bioelectron., 25, 832 (2009)
Song MJ, Korean Chem. Eng. Res., 59, 606 (2021)
Torz-Piotrowska R, Wrzyszczyński A, Paprocki K, Szreiber M, Uniszkiewicz C, Staryga E, J. Achiev. Mater. Manuf. Eng., 37, 486 (2009)
Wu J, Qu Y, Anal. Bioanal. Chem., 385, 1330 (2006)
Meher SK, Rao GR, Nanoscale, 5, 2089 (2013)
Zhuang Z, Su X, Yuan H, Sun Q, Xiao D, Choi MM, Analyst, 133, 126 (2008)
Jagadeesan MS, Movlaee K, Krishnakumar T, Leonardi SG, Neri G, J. Electroananl. Chem., 835, 161 (2019)
Yang J, Jiang LC, Zhang WD, Gunasekaran S, Talanta, 82, 25 (2010)
Rong LQ, Yang C, Qian QY, Xia XH, Talanta, 72, 819 (2007)
Dilmac Y, Guler M, J. Electroanal. Chem., 864, 114091 (2020)
Ye JS, Chen CW, Lee CL, Sens. Actuators B-Chem., 208, 569 (2015)
Liu Y, Teng H, Hou H, You T, Biosens. Bioelectron., 24, 3329 (2009)
Ahmad R, Khan M, Tripathy N, Khan MR, Khosla A, J. Electrochem. Soc., 167, 107504 (2020)
Song MJ, Lee SK, Kim JH, Lim DS, J. Electrochem. Soc., 160, B43 (2013)
Sattarahmady N, Heli H, J. Exp. Nanosci., 7, 529 (2012)
Dayakar T, Venkateswara RK, Bikshalu K, Rajendar V, Park SH, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 75, 1472 (2017)
Kailasa S, Geeta B, Jayarambabu N, Reddy RKK, Sharma S, Rao KV, Mater. Lett., 245, 118 (2019)
Marimuthu T, Mohamad S, Alias Y, Synth. Met., 207, 35 (2015)
Song J, Xu L, Zhou C, Xing R, Dai Q, Liu D, Song H, ACS Appl. Mater. Interfaces, 5, 12928 (2013)
Liu Y, Sun G, Jiang C, Zheng XT, Zheng L, Li CM, Microchim. Acta, 181, 63 (2014)
Wang, Joseph, Deo RP, Poulin P, Mangey M, J. Am. Chem. Soc., 125, 14706 (2003)
Jiangtao D, Zhang X, Yong Z, Zhang Y, Li D, Li R, Li Q, Adv. Mater., 28, 10529 (2016)
Jung C, Liu W, Hao H, Wang H, Meng F, Lau D, Nanoscale, 12, 16305 (2020)
Cho SY, Yu H, Choi J, Kang H, Park S, Jang JS, Hong HJ, Kim ID, Lee SK, Jeong HS, Jung HT, ACS Nano, 13, 9332 (2019)
Miao XM, Yuan R, Chai YQ, Shi YT, Yuan YY, J. Electoanal. Chem., 612, 157 (2008)
Yoon SS, Ramadoss A, J. Electroanal. Chem., 717-718, 90 (2014)
Singh B, Bhatia V, Jain VK, Sens. Transducers, 146, 69 (2012)
Teo WZ, Ambrosi A, Pumera M, Electrochem. Commun., 28, 51 (2013)
Bard AJ, Faulkner LR, Electrochemical Methods: Fundamentals and Applications, 2nd ed., John Wiley and Sons, New York(1980).
Upadhyay S, Rao GR, Sharma MK, Bhattacharya BK, Rao VK, Vijayaraghavan R, Biosens. Bioelectron., 25, 832 (2009)
Song MJ, Korean Chem. Eng. Res., 59, 606 (2021)
Torz-Piotrowska R, Wrzyszczyński A, Paprocki K, Szreiber M, Uniszkiewicz C, Staryga E, J. Achiev. Mater. Manuf. Eng., 37, 486 (2009)
Wu J, Qu Y, Anal. Bioanal. Chem., 385, 1330 (2006)
Meher SK, Rao GR, Nanoscale, 5, 2089 (2013)
Zhuang Z, Su X, Yuan H, Sun Q, Xiao D, Choi MM, Analyst, 133, 126 (2008)