Overall
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 13, 2023
Revised June 28, 2023
Accepted June 28, 2023
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Most Downloaded
아세트알데하이드 흡착을 위한 활성탄의 첨착 및 개질 효과
Effect of Impregnation and Modification on Activated Carbon for Acetaldehyde Adsorption
Abstract
본 연구에서는 공기청정기 필터용 활성탄의 아세트알데하이드 제거 특성이 금속 촉매 첨착 및 관능기 도입 방법을
사용하여 조사되었다. 야자각 차의 KOH 활성화를 통해 고 비표면적(1700 m2
/g)과 미세기공이 발달한 활성탄을 제
조하였으며, 금속촉매 첨착과 관능기 개질을 위해 침지 후 기공 내 건조조건에 따른 첨착 효율을 조사하였다. 제조
된 활성탄의 물성은 비표면적 및 기공 분석(BET), 유도결합 플라즈마 분광 분석(ICP), 유기 원소 분석(EA) 및 푸
리에변환 적외선 분광 분석(FT-IR) 등을 통해 분석하였으며, 활성탄 성능 확인을 위해 침지 농도에 따른 아세트알
데하이드 흡착성능을 가스크로마토그래피(GC)로 분석하였다. 첨착용액의 농도가 증가함에 따라 금속촉매 첨착량은
증가하였으며, 비표면적은 감소하는 경향을 보였다. 각 금속촉매 첨착 및 표면개질 활성탄의 파과시험 결과
MgO10@AC, CaO10@AC, EU10@AC, H-U3N1@AC 조성에서 우수한 아세트알데하이드 흡착성능을 보여주었다. 흡
착성능이 가장 뛰어난 MgO10@AC에 대해 파과 시간은 533.8 분, 흡착량은 57.4 mg/g으로 측정되었으며, 이는 활
성탄에 나노 크기의 MgO 촉매를 첨착할 경우 아세트알데하이드의 카보닐기와 상호작용하여 흡착성능이 개선됨을
알 수 있었다.
In this study, the acetaldehyde removal characteristics of activated carbon (AC) for air purifier filters were
investigated using metal catalysts-impregnation and functional group-modification method. The AC with a high specific
surface area(1700 m2
/g) and micropores was prepared by KOH activation of coconut charcoal and the efficiency of
catalyst and functional group immobilization was examined by varying the drying conditions within the pores after
immersion. The physical properties of the prepared activated carbon were analyzed by BET, ICP, EA, and FT-IR, and the
acetaldehyde adsorption performances were investigated using gas chromatography (GC) at various impregnation and
modified conditions. As the concentration of impregnation solution increased, the amount of impregnated metal catalysts
increased, while the specific surface area showed a decreasing trend. The adsorption tests of the metal catalystimpregnated and functional group-modified activated carbons revealed that excellent adsorption performance in
compositions MgO10@AC, CaO10@AC, EU10@AC, and H-U3N1@AC, respectively. The MgO10@AC, which
showed the highest adsorption performance, had a breakthrough time of 533.8 minutes and adsorption capacity of 57.4
mg/g for acetaldehyde adsorption. It was found that the nano-sized MgO catalyst on the activated carbon improved the
adsorption performance by interacting with carbonyl groups of acetaldehyde.
References
2. Sundman, M. R., Lundgren, M., Vestin, E. and Herder, P.,“Emissions of Acetic Acid and Other Volatile Organic Compounds from Different Species of Solid Wood,” Eur. J. Wood Wood Prod., 56, 125-129(1998).
3. Lillo-Ródenas, M. A., Cazorla-Amorós, D. and Linares-Solano,A., “Behaviour of Activated Carbons with Different Pore Size Distributions and Surface Oxygen Groups for Benzene and Toluene Adsorption at Low Concentrations,” Carbon, 43, 1758-1767(2005).
4. Zhang, J. and Smith, K. R., “Emissions of Carbonyl Compounds from Various Cookstoves in China,” Environ. Sci. Technol., 33(14),2311-2320(1999).
5. Mansour, E., Curling, S., Stéphan, A. and Ormondroyd, G.,“Absorption of Volatile Organic Compounds by Different Wool Types,” Green Mater., 4(1), 1-7(2016).
6. Kim, M., Lim, G., Kim, Y., Han, B., Woo, C. and Kim, H., “A Novel Electrostatic Precipitator-type Small Air Purifier with a Carbon Fiber Ionizer and An Activated Carbon Fiber Filter,” J.Aerosol Sci., 117, 63-73(2018).
7. Molina-Sabio, M., Gonzalez, M. T., Rodriguez-Reinoso, F. and Sepulveda-Escribano, A., “Effect of Steam and Carbon Dioxide Activation in the Micropore Size Distribution of Activated Carbon,” Carbon, 34(4), 504-509(1996).
8. Evans, M. J. B., Halliop, E. and MacDonald, J. A. F., “The Production of Chemically-activated Carbon,” Carbon, 37, 269-274(1999).
9. Selvanathan, N. and Subki, N. S., “Dye Adsorbent by Pineapple Activated Carbon: H3PO4 and NaOH Activation,” ARPN J. Eng.Appl. Sci., 10(20), 9476-9480(2015).
10. Hanum, F., Bani, O. and Izdiharo, A. M., “Characterization of Sodium Carbonate (Na2CO3) Treated Rice Husk Activated Carbon and Adsorption of Lead from Car Battery Wastewater,” IOP Conf. Ser.: Mater. Sci. Eng., 180, 012149(2017).
11. Bekyarova, E. and Mehandjiev, D., “Effect of Calcination on Co-Impregnated Active Carbon,” J. Colloid Interface Sci., 161,115-119(1993).
12. El-sayed, Y. and Bandosz, T. J., “A Study of Acetaldehyde Adsorption on Activated Carbons,” J. Colloid Interface Sci., 242, 44-51(2001).
13. Liu, Y., Jia, H., Li, C., Sun, Z., Pan, Y. and Zheng, S., “Efficient Removal of Gaseous Formaldehyde by Amine-modified Diatomite:a Combined Experimental and Density Functional Theory Study,”Environ. Sci. Pollut. Res., 26, 25130-25141(2019).
14. Ryu, D. Y., Nakabayashi, K., Shimohara, T., Morio, U., Mochida,I., Miyawaki, J., Jeon, Y., Park, J. I. and Yoon, S. H., “Behaviors of
Cellulose-Based Activated Carbon Fiber for Acetaldehyde Adsorption at Low Concentration,” Appl. Sci., 10(1), 25(2019).
15. Srinives, S., Sarkar, T. and Mulchandani, A., “Primary Aminefunctionalized Polyaniline Nanothin Film Sensor for Detecting Formaldehyde,” Sens. Actuators B Chem., 194, 255-259(2014).
16. Baur, G. B., Yuranov, I. and Minsker, L. K., “Activated Carbon Fibers Modified by Metal Oxide as Effective Structured Adsorbents for Acetaldehyde,” Catal. Today, 249, 252-258(2015).
17. Kim, W., Vikrant, K., Younis, S. A., Kim, K. and Heynderickx,P. M., “Metal Oxide/actived Carbon Composites for the Reactive Adsorption and Catalytic Oxidation of Formaldehyde and Toluen in Air,” J. Clean. Prod., 387, 135925(2021).
18. Ma, W., Ding, Y., Yang, J., Liu, X. and Lin, L., “Study of Activated Carbon Supported Iron Catalysts for the Fischer-tropsch Synthesis,” React. Kinet. Catal. Lett., 84(1), 11-19(2005).
19. Amornpattana, W. K., Phadungbut, P., Kunthakudee, N., Jonglertjunya, W., Ratchahat, S. and Hunsom, M., “Innovative Metal Oxides
(CaO, SrO, MgO) Impregnated Waste-derived Activated Carbon for Biohydrogen Purification,” Scientific Reports, 13(1), 4705(2023).
20. Ryu, D. Y., Shimohara, T., Nakabayashi, K., Miyawaki, J., Park,J. I. and Yoon, S. H., “Urea/nitric Acid co-impregnated Pitch-based Activated Carbon Fiber for the Effective Removal of Formaldehyde,” J. Ind. Eng. Chem., 80, 98-105(2019).
21. Kuruvilla, T. K., Muthu, S., Prasana, J. C., George, J. and Sevvanthi, S., “Spectroscopic (FT-IR, FT-Raman), Quantum Mechanical and Docking Studies on Methyl[(3S)-3-(naphtalene-1-yloxy)-3-(thiophen-2-yl)propyl]amine,” J. Mol. Struct., 1175, 163-174(2019).
22. Ahmad, S. I., Syed, I. A., Prasad, P. R. and Ahmad, A., “Quantitation of urea in urine by fourier transforms infrared spectroscopy,” Der Pharma Chem., 6(1), 90-96(2014).
23. Baur, G. B., Yuranov, I. and Minsker, L. K., “Activated Carbon Fibers Modified by Metal Oxide as Effective Structrured Adsorbents for Acetaldehyde,” Catal. Today, 249, 252-258(2015).
24. Sidek, M. Z., Cheah, Y. J., Zulkefli, N. N., Yusuf, N. Y. M., Isahak, W. N. R. W., Sitanggang, R. and Masdar, M. S., “Effect of Impregnated Activated Carbon on Carbon Dioxide Adsorption Performance for Biohydrogen Purification,” Mater. Res. Express,6(1), 015510(2018).