ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
english
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 30, 2024
Revised September 2, 2024
Accepted September 4, 2024
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Latest issues

Investigating the Impacts of Various Parameters on Lactic Acid Production; A Review

Department of Chemical Engineering, NFC-Institute of Engineering & Fertilizer Research, Faisalabad, Pakistan 1Institute of Chemical Engineering & Technology, University of the Punjab, Lahore, Pakistan
najafawan@hotmail.com
Korean Chemical Engineering Research, November 2024, 62(4), 281-295(15), 10.9713/kcer.2024.62.4.281 Epub 1 November 2024
downloadDownload PDF

Abstract

This review examines the effects of different process parameters on the production of lactic acid.

Especially focusing on the factors such as, pH, temperature, utilization of fungi, viz., Rhizopus species and selection of

carbon and nitrogen sources. The development of lactic acid synthesis is promoted by acidic environment, usually

falling within pH < 3.5, which allows optimal lactic acid synthesis. Another important factor is temperature. Strains

such as lactobacillus rhamnosus DUT1908, have a high tolerance to temperature as high as 50℃, which allows for

effective substrate utilization and high lactic acid yield. This review highlights the need of tailoring these process

parameters to the specific characteristics of the biomass and the metabolic pathways of the microorganisms to achieve

increased lactic acid production.

References

1. Ferguson, B. S., Rogatzki, M. J., Goodwin, M. L., Kane, D. A.,
Rightmire, Z. and Gladden, L. B., “Lactate Metabolism: Historical
Context, Prior Misinterpretations, and Current Understanding,”
European Journal of Applied Physiology, 118, 691-728 (2018).
2. Choudhary, C. and Kumari, P., “A Study on Lactic Acid Fermentation
Properties and Applications,” Int. J. Res. Anal. Sci.
Eng., 1, 42-47(2021).
3. Abedi, E. and Hashemi, S. M. B., “Lactic Acid Production–producing
Microorganisms and Substrates Sources-state of Art,”
Heliyon, 6(10), 14-32(2020).
4. Wee, Y.-J., Yun, J.-S., Lee, Y. Y., Zeng, A.-P. and Ryu, H.-W.,
“Recovery of Lactic Acid by Repeated Batch Electrodialysis and
Lactic Acid Production Using Electrodialysis Wastewater,” Journal
of Bioscience and Bioengineering, 99(2), 104-108(2005).
5. Cubas-Cano, E., González-Fernández, C., Ballesteros, M. and
Tomás-Pejó, E., “Biotechnological Advances in Lactic Acid Production
by Lactic Acid Bacteria: Lignocellulose as Novel Substrate,”
Biofuels, Bioproducts and Biorefining, 12(2), 290-303(2018).
6. Nwamba, M. C., Sun, F., Mukasekuru, M. R., Song, G., Harindintwali,
J. D., Boyi, S. A. and Sun, H., “Trends and Hassles in
the Microbial Production of Lactic Acid from Lignocellulosic
Biomass,” Environmental Technology & Innovation, 21, 101-337
(2021).
7. Wakil, S. and Ajayi, O. O., “Production of Lactic Acid from
Starchy-based Food Substrates,” Journal of Applied Biosciences,
71, 5673-5681(2013).
8. Qi, X., Tang, Y., Jian, H. L., Li, X. and Jiang, J. X., “Production
of Lactic Acid by Simultaneous Saccharification and Fermentation
Using Steam Pretreated Lespedeza Stalks as Inexpensive
Raw Materials,” Advanced Materials Research, 152, 1404-1411
(2011).
9. Malacara-Becerra, A., Melchor-Martínez, E. M., Sosa-Hernández,
J. E., Riquelme-Jiménez, L. M., Mansouri, S. S., Iqbal, H. M.
and Parra-Saldívar, R., “Bioconversion of Corn Crop Residues:
Lactic Acid Production Through Simultaneous Saccharification
and Fermentation,” Sustainability 14(19), 117-199(2022).
10. Chacón, M. G., Ibenegbu, C. and Leak, D. J., “Simultaneous
Saccharification and Lactic Acid Fermentation of the Cellulosic
Fraction of Municipal Solid Waste Using Bacillus Smithii,” Biotechnology
Letters, 43(3), 667-675(2021).
11. Zuliani, L., Serpico, A., De Simone, M., Frison, N. and Fusco,
S., “Biorefinery Gets Hot: Thermophilic Enzymes and Microorganisms
for Second-Generation Bioethanol Production,” Processes,
9(9), 1583(2021).
12. Aulitto, M., Fusco, S., Fiorentino, G., Limauro, D., Pedone, E.,
Bartolucci, S. and Contursi, P., “Thermus Thermophilus as Source
of Thermozymes for Biotechnological Applications: Homologous
Expression and Biochemical Characterization of an α-galactosidase,”
Microbial Cell Factories, 16(1), 28(2017).
13. Hassan, S. S., “Production of Biodegradable Poly Lactic Acid
from Pineapple Industry Wastewater by Lactobacillus Casei Fermentation,
Universiti Tun Hussein Onn Malaysia. (2017).
14. Mirza, S. S., Qazi, J. I., Liang, Y. and Chen, S., “Growth Characteristics
and Photofermentative Biohydrogen Production Potential
of Purple Non Sulfur Bacteria from Sugar Cane Bagasse,”
Fuel 255, 115-805(2019).
15. Galbe, M. and Zacchi, G., “Pretreatment of Lignocellulosic Materials
for Efficient Bioethanol Production, in Biofuels, L. Olsson, Editor,
Springer Berlin Heidelberg, Berlin, Heidelberg, 41-65 (2007).
16. Zou, L., Ouyang, S., Hu, Y., Zheng, Z. and Ouyang, J., “Efficient
Lactic Acid Production from Dilute Acid-pretreated Lignocellulosic
Biomass by a Synthetic Consortium of Engineered Pseudomonas
Putida and Bacillus Coagulans,” Biotechnology for
Biofuels, 14(1), 227(2021).
17. Jönsson, L. J. and Martín, C., “Pretreatment of Lignocellulose:
Formation of Inhibitory by-products and Strategies for Minimizing
Their Effects,” Bioresource Technology, 199, 103-112(2016).
18. Komesu, A., de Oliveira, J. A. R., da Silva Martins, L. H., Maciel,
M. W. and Maciel Filho, R., “Lactic Acid Production to Purification:
a Review,” BioResources, 12(2), 4364-4383(2017).
19. Daful, A. G., Loridon, M. and Chandraratne, M. R., “Lactic Acid
Production from Lignocellulosic Biomass, in From Biomass to
Biobased Products,” IntechOpen, 1, 406(2023).
20. Gao, C., Ma, C. and Xu, P., “Biotechnological Routes Based on
Lactic Acid Production From Biomass,” Biotechnology Advances,
29(6), 930-939(2011).
21. Ajala, E. O., Olonade, Y. O., Ajala, M. A. and Akinpelu, G. S.,
“Lactic Acid Production from Lignocellulose–A Review of Major
Challenges and Selected Solutions,” ChemBioEng Reviews, 7(2),
38-49(2020).
22. Abdel-Rahman, M. A., Tashiro, Y. and Sonomoto, K., “Lactic
Acid Production from Lignocellulose-derived Sugars Using Lactic
Acid Bacteria: Overview and Limits,” Journal of Biotechnology,
156(4), 286-301(2011).
23. Vidra, A., Tóth, A. J. and Németh, Á., “Lactic Acid Production
from Cane Molasses,” Waste Treatment and Recovery, 2(1), 13-
16 (2017).
24. Nurkhamidah, S., Altway, A., Susianto, Rahmawati, Y., Taufany,
F., Hendrianie, N., Ni’mah, H., Gunardi, I., Zulaikah, S., Ningrum,
E. O., Nyamiati, R. D. and Ramadhani, A., “Utilization of Molasses
to Produce Lactic Acid by Using Lactobacillus Delbrueckii
and Lactobacillus Plantarum,” IOP Conference Series: Materials
Science and Engineering, 543(1), 12-15(2019).
25. Rahmayetty, Meri Yulvianti, Rudi Hartono, “Synthesis of Lactic
Acid from Molasses by Lactobacillus acidophilus Using a Batch
Fermentation Process,” Jurnal Rekayasa Kimia dan Lingkungan,
17(2), 104-113(2022).
26. Balakrishnan, R., Reddy Tadi, S. R., Sivaprakasam, S. and Rajaram,
S., “Optimization of Acid And Enzymatic Hydrolysis of
Kodo Millet (Paspalum scrobiculatum) Bran Residue to Obtain
Fermentable Sugars for the Production of Optically Pure d (−)
Lactic Acid,” Industrial Crops and Products, 111, 731-742(2018).
27. Lech, M., “Optimisation of Protein-free Waste Whey Supplementation
Used for the Industrial Microbiological Production of
Lactic Acid,” Biochemical Engineering Journal, 157, 107-531(2020).
28. Pejin, J., Radosavljević, M., Pribić, M., Kocić-Tanackov, S., Mladenović,
D., Djukić-Vuković, A. and Mojović, L., “Possibility of
L-(+)-lactic Acid Fermentation Using Malting, Brewing, and Oil
Production by-products,” Waste Management, 79, 153-163 (2018).
29. Carpinelli Macedo, J. V., de Barros Ranke, F. F., Escaramboni,
B., Campioni, T. S., Fernández Núñez, E. G. and de Oliva Neto,
P., “Cost-effective Lactic Acid Production by Fermentation of
Agro-industrial Residues,” Biocatalysis and Agricultural Biotechnology,
27, 101-706(2020).
30. Klongklaew, A., Unban, K., Kanpiengjai, A., Wongputtisin, P.,
Pamueangmun, P., Shetty, K. and Khanongnuch, C., “Improvement
of Enantiomeric l-Lactic Acid Production from Mixed
Hexose-Pentose Sugars by Coculture of Enterococcus mundtii
WX1 and Lactobacillus rhamnosus SCJ9,” Fermentation, 7(2),
95 (2021).
31. Azaizeh, H., Abu Tayeh, H. N., Schneider, R., Klongklaew, A.
and Venus, J., “Production of Lactic Acid from Carob, Banana
and Sugarcane Lignocellulose Biomass,” Molecules, 25(13), 29-
56(2020).
32. Wischral, D., Arias, J. M., Modesto, L. F., de França Passos, D.
and Pereira Jr, N., “Lactic Acid Production From Sugarcane Bagasse
Hydrolysates by Lactobacillus Pentosus: Integrating Xylose and
Glucose Fermentation,” Biotechnology Progress, 35(1), e2718
(2019).
33. de la Torre, I., Acedos, M. G., Ladero, M. and Santos, V. E., “On
the Use of Resting L. delbrueckii spp. Delbrueckii Cells for D-lactic
Acid Production from Orange Peel Wastes Hydrolysates,” Biochemical
Engineering Journal, 145, 162-169(2019).
34. Cingadi, S., Srikanth, K., E. V. R. A. and Sivaprakasam, S.,
“Statistical Optimization of Cassava Fibrous Waste Hydrolysis
by Response Surface Methodology and Use of Hydrolysate Based
Media for the Production of Optically Pure d-lactic Acid,” Biochemical
Engineering Journal, 102, 82-90(2015).
35. Marques, S., Gírio, F. M., Santos, J. A. L. and Roseiro, J. C.,
“Pulsed Fed-batch Strategy Towards Intensified Process for Lactic
Acid Production Using Recycled Paper Sludge,” Biomass Conversion
and Biorefinery, 7(2), 127-137(2017).
36. Bahry, H., Abdalla, R., Pons, A., Taha, S. and Vial, C., “Optimization
of Lactic Acid Production Using Immobilized Lactobacillus
Rhamnosus and Carob Pod Waste from the Lebanese Food
Industry,” Journal of Biotechnology, 306, 81-88(2019).
37. Bernardo, M. P., Coelho, L. F., Sass, D. C. and Contiero, J., “L-
(+)-Lactic Acid Production by Lactobacillus Rhamnosus B103
from Dairy Industry Waste,” Brazilian Journal of Microbiology,
47, 640-646(2016).
38. Liu, P., Zheng, Z., Xu, Q., Qian, Z., Liu, J. and Ouyang, J., “Valorization
of Dairy Waste for Enhanced D-lactic Acid Production
at Low Cost,” Process Biochemistry, 71, 18-22(2018).
39. Kwan, T. H., Hu, Y. and Lin, C. S. K., “Valorisation of Food
Waste Via Fungal Hydrolysis and Lactic Acid Fermentation with
Lactobacillus Casei Shirota,” Bioresource Technology, 217, 129-
136(2016).
40. Wang, J., Gao, M., Liu, J., Wang, Q., Wang, C., Yin, Z. and Wu,
C., “Lactic Acid Production from Sophora Flavescens Residues
Pretreated with Sodium Hydroxide: Reutilization of the Pretreated
Liquor During Fermentation,” Bioresource Technology, 241, 915-
921(2017).
41. Oonkhanond, B., Jonglertjunya, W., Srimarut, N., Bunpachart,
P., Tantinukul, S., Nasongkla, N. and Sakdaronnarong, C., “Lactic
Acid Production from Sugarcane Bagasse by an Integrated System
of Lignocellulose Fractionation, Saccharification, Fermentation,
and ex-situ Nanofiltration,” Journal of Environmental Chemical
Engineering, 5(3), 2533-2541(2017).
42. Zhang, C., Yang, H.-Q. and Wu, D.-J., “Study on the Reuse of
Anaerobic Digestion Effluent in Lactic Acid Production,” Journal
of Cleaner Production, 239, 118-128(2019).
43. Singhvi, M., Zendo, T., Iida, H., Gokhale, D. and Sonomoto, K.,
“Stimulation of d- and l-lactate Dehydrogenases Transcriptional
Levels in Presence of Diammonium Hydrogen Phosphate Resulting
to Enhanced Lactic Acid Production by Lactobacillus Strain,”
Journal of Bioscience and Bioengineering, 124(6), 674-679(2017).
44. Chen, P.-T., Hong, Z.-S., Cheng, C.-L., Ng, I. S., Lo, Y.-C.,
Nagarajan, D. and Chang, J.-S., “Exploring Fermentation Strategies
for Enhanced Lactic Acid Production with Polyvinyl Alcohol-
immobilized Lactobacillus Plantarum 23 Using Microalgae
As Feedstock,” Bioresource Technology, 308, 123-266(2020).
45. Okano, K., Hama, S., Kihara, M., Noda, H., Tanaka, T. and Kondo,
A., “Production of Optically Pure d-lactic Acid from Brown Rice
Using Metabolically Engineered Lactobacillus Plantarum,” Applied
Microbiology and Biotechnology, 101(5), 1869-1875(2017).
46. Yang, S., Yu, H., You, Y., Li, X. and Jiang, J., “Effective Lactic
Acid Production from Waste Paper Using Streptococcus Thermophilus
at Low Enzyme Loading Assisted by Gleditsia Saponin,”
Carbohydrate Polymers, 200, 122-127(2018).
47. Abdel-Rahman, M. A., Hassan, S. E.-D., Roushdy, M. M., Azab,
M. S. and Gaber, M. A., “Free-nutrient Supply and Thermo-alkaline
Conditions for Direct Lactic Acid Production from Mixed Lignocellulosic
and Food Waste Materials,” Bioresource Technology
Reports, 7, 100-256(2019).
48. Cubas-Cano, E., González-Fernández, C., Ballesteros, I. and Tomás-
Pejó, E., “Efficient Utilization of Hydrolysates from Steam-exploded
Gardening Residues for Lactic Acid Production by Optimization of
Enzyme Addition and pH Control,” Waste Management, 107,
235-243(2020).
49. Kawai, M., Harada, R., Yoda, N., Yamasaki-Yashiki, S., Fukusaki,
E. and Katakura, Y., “Suppression of Lactate Production by
Using Sucrose as a Carbon Source in Lactic Acid Bacteria,”
Journal of Bioscience and Bioengineering, 129(1), 47-51(2020).
50. Chen, H., Chen, B., Su, Z., Wang, K., Wang, B., Wang, Y., Si, Z.,
Wu, Y., Cai, D. and Qin, P., “Efficient Lactic Acid Production From
Cassava Bagasse by Mixed Culture of Bacillus Coagulans and
Lactobacillus Rhamnosus Using Stepwise pH Controlled Simultaneous
Saccharification and co-fermentation,” Industrial Crops
and Products, 146, 112-175(2020).
51. Cizeikiene, D., Juodeikiene, G. and Damasius, J., “Use of Wheat
Straw Biomass in Production of L-lactic Acid Applying Biocatalysis
and Combined Lactic Acid Bacteria Strains Belonging to
the Genus Lactobacillus,” Biocatalysis and Agricultural Biotechnology,
15, 185-191(2018).
52. Qiu, Z., Gao, Q. and Bao, J., Engineering Pediococcus Acidilactici
with Xylose Assimilation Pathway for High Titer Cellulosic
L-lactic Acid Fermentation,” Bioresource Technology, 249, 9-15
(2018).
53. Peinemann, J. C., Demichelis, F., Fiore, S. and Pleissner, D.,
“Techno-economic Assessment of Non-sterile Batch and Continuous
Production of Lactic Acid from Food Waste,” Bioresource
Technology, 289, 121-631(2019).
54. Yao, K., Zhou, Q.-X., Liu, D.-M., Chen, S.-M. and Yuan, K.,
“Comparative Proteomics of the Metabolic Pathways Involved
in l-lactic Acid Production in Bacillus Coagulans BCS13002
Using Different Carbon Sources,” LWT 116, 108-445(2019).
55. Chen, H., Su, Z., Wang, Y., Wang, B., Si, Z., Lu, J., Su, C., Ren,
W., Chen, H., Cai, D. and Qin, P., “Lactic Acid Production from
Pretreated Corn Stover with Recycled Streams,” Process Biochemistry,
91, 132-140(2020).
56. Chen, H., Huo, W., Wang, B., Wang, Y., Wen, H., Cai, D., Zhang,
C., Wu, Y. and Qin, P., “L-lactic Acid Production by Simultaneous
Saccharification and Fermentation of Dilute Ethylediamine
Pre-treated Rice Straw,” Industrial Crops and Products, 141,
111-749(2019).
57. Taleghani, H. G., Najafpour, G. D. and Ghoreyshi, A. A., “A
Study on the Effect of Parameters on Lactic Acid Production
from Whey,” Polish Journal of Chemical Technology, 18(1), 58-
63 (2016).
58. Abdel-Rahman, M. A., Tashiro, Y. and Sonomoto, K., “Recent
Advances in Lactic Acid Production by Microbial Fermentation
Processes,” Biotechnology Advances, 31(6), 877-902(2013).
59. Pangestu, R., Kahar, P., Kholida, L.N., Perwitasari, U., Thontowi,
A., Fahrurrozi, Lisdiyanti, P., Yopi, Ogino, C., Prasetya, B.
and Kondo, A., “Harnessing Originally Robust Yeast for Rapid
Lactic Acid Bioproduction Without Detoxification and Neutralization,”
Scientific Reports, 12(1), 136-450(2022).
60. Jang, B.-K., Ju, Y., Jeong, D., Jung, S.-K., Kim, C.-K., Chung,
Y.-S. and Kim, S.-R., “L-Lactic Acid Production Using Engineered
Saccharomyces cerevisiae with Improved Organic Acid
Tolerance,” Journal of Fungi., 7(11), 928 (2021).
61. Peinemann, J. C. and Pleissner, D., “Continuous Pretreatment, Hydrolysis,
and Fermentation of Organic Residues for the Production
of Biochemicals,” Bioresource Technology., 295, 122-256(2020).
62. Sun, Y., Liu, H., Yang, Y., Zhou, X. and Xiu, Z., “High-efficient
L-lactic Acid Production from Inedible Starchy Biomass by
One-step Open Fermentation Using Thermotolerant Lactobacillus
rhamnosus DUT1908,” Bioprocess and Biosystems Engineering,
44(9), 1935-1941(2021).
63. Lin, H.-T.V., Huang, M.-Y., Kao, T.-Y., Lu, W.-J., Lin, H.-J. and
Pan, C.-L., “Production of Lactic Acid from Seaweed Hydrolysates
via Lactic Acid Bacteria Fermentation,” Fermentation,
6(1), 37 (2020).
64. Thakur, A., Panesar, P. S. and Saini, M. S., “Optimization of
Process Parameters and Estimation of Kinetic Parameters for
Lactic Acid Production by Lactobacillus Casei MTCC 1423,”
Biomass Conversion and Biorefinery, 9, 253-266(2019).
65. Probst, M., Walde, J., Pümpel, T., Wagner, A. O., Schneider, I.
and Insam, H., “Lactic Acid Fermentation Within a Cascading
Approach for Biowaste Treatment,” Applied Microbiology and
Biotechnology, 99, 3029-3040(2015).
66. Tashiro, Y., Inokuchi, S., Poudel, P., Okugawa, Y., Miyamoto,
H., Miayamoto, H. and Sakai, K., “Novel pH Control Strategy
for Efficient Production of Optically Active L-lactic Acid from
Kitchen Refuse Using a Mixed Culture System,” Bioresource
Technology, 216, 52-59(2016).
67. Kwan, T. H., Vlysidis, A., Wu, Z., Hu, Y., Koutinas, A. and Lin,
C. S. K., “Lactic Acid Fermentation Modelling of Streptococcus
Thermophilus YI-B1 and Lactobacillus Casei Shirota Using
Food Waste Derived Media,” Biochemical Engineering Journal,
127, 97-109(2017).
68. Abdel-Rahman, M. A., Tashiro, Y., Zendo, T., Shibata, K. and
Sonomoto, K., “Isolation and Characterisation of Lactic Acid
Bacterium for Effective Fermentation of Cellobiose Into Optically
Pure Homo L-(+)-lactic Acid,” Applied Microbiology and Biotechnology,
89, 1039-1049(2011).
69. Liang, S., McDonald, A. G. and Coats, E. R., “Lactic Acid Production
from Potato Peel Waste by Anaerobic Sequencing Batch
Fermentation Using Undefined Mixed Culture,” Waste Management,
45, 51-56(2015).
70. Ding, S. and Tan, T., “L-lactic Acid Production by Lactobacillus
Casei Fermentation Using Different Fed-batch Feeding Strategies,”
Process Biochemistry, 41(6), 1451-1454(2006).
71. Ahring, B. K., Traverso, J. J., Murali, N. and Srinivas, K., “Continuous
Fermentation of Clarified Corn Stover Hydrolysate for
the Production of Lactic Acid at High Yield and Productivity,”
Biochemical Engineering Journal, 109, 162-169(2016).
72. Schepers, A. W., Thibault, J. and Lacroix, C., “Continuous Lactic
Acid Production in Whey Permeate/yeast Extract Medium with
Immobilized Lactobacillus Helveticus in a Two-stage Process:
Model and Experiments,” Enzyme and Microbial Technology,
38(3-4), 324-337(2006).
73. Kim, H.-O., Wee, Y.-J., Kim, J.-N., Yun, J.-S. and Ryu, H.-W.
“Production of Lactic Acid From Cheese Whey by Batch and
Repeated Batch Cultures of Lactobacillus sp. RKY2. in Twenty-
Seventh Symposium on Biotechnology for Fuels and Chemicals,”
Springer, 131, 694-704(2006).
74. Roukas, T. and Kotzekidou, P., “Lactic Acid Production From
Deproteinized Whey by Mixed Cultures of Free and Coimmobilized
Lactobacillus casei and Lactococcus lactis Cells Using Fedbatch
Culture,” Enzyme and Microbial Technology, 22(3), 199-
204(1998).
75. Nomura, Y., Iwahara, M. and Hongo, M., “Lactic Acid Production
by Electrodialysis Fermentation Using Immobilized Growing
Cells,” Biotechnology and Bioengineering, 30(6), 788-793(1987).
76. Petit, C., Grill, J., Maazouzi, N. and Marczak, R., “Regulation of
Polysaccharide Formation by Streptococcus Thermophilus in Batch
and Fed-batch Cultures,” Applied Microbiology and Biotechnology,
36, 216-221(1991).
77. Paulova, L., Chmelik, J., Branska, B., Patakova, P., Drahokoupil,
M. and Melzoch, K., “Comparison of Lactic Acid Production by
L. casei in Batch, Fed-batch and Continuous Cultivation, Testing
the Use of Feather Hydrolysate as a Complex Nitrogen Source,”
Brazilian Archives of Biology and Technology, 63, 201-901(2020).
78. Romaní, A., Yáñez, R., Garrote, G. and Alonso, J. L., “SSF Production
of Lactic Acid From Cellulosic Biosludges,” Bioresource
Technology, 99(10), 4247-4254(2008).
79. Katzbauer, B., Cesi, V., Narodoslawxky, M. and Moser, A.,
“Extractive Lactic Acid Fermentation Using Aqueous Two-phase
Systems,” Chemical and Biochemical Engineering Quarterly,
9(2), 79-87(1995).
80. Shibata, K., Flores, D. M., Kobayashi, G. and Sonomoto, K.,
“Direct L-lactic Acid Fermentation with Sago Starch by a Novel
Amylolytic Lactic Acid Bacterium, Enterococcus Faecium,”
Enzyme and Microbial Technology, 41(1-2), 149-155(2007).
81. Németh, Á. and Sevella, B., “Role of pH-regulation in Lactic Acid
Fermentation: Second Steps in a Process Improvement,” Chemical
Engineering and Processing: Process Intensification, 50(3),
293-299(2011).
82. Erliana, W., Widjaja, T., Altway, A., Sandra, M., and Susilo, D.
The Effects of Various pH and Temperature to Enhance Lactic
Acid Production Using Lactobacillus Casei and Lactobacillus
Rhamnosus. in AIP Conference Proceedings,” AIP Publishing,
2197(1), 234-292(2020).
83. Rault, A., Bouix, M. and Béal, C., “Fermentation pH Influences
the Physiological-state Dynamics of Lactobacillus Bulgaricus
CFL1 During pH-controlled Culture,” Applied and Environmental
Microbiology, 75(13), 4374-4381(2009).
84. Pau, S., Tan, L. C., Arriaga, S. and Lens, P. N., “Lactic Acid
Fermentation of Food Waste at Acidic Conditions in a Semicontinuous
System: effect of HRT and OLR Changes,” Biomass
Conversion and Biorefinery, 14(10), 1-16(2022).
85. Al-Dhabi, N. A., Esmail, G. A. and Valan Arasu, M., “Co-fermentation
of Food Waste and Municipal Sludge from the Saudi
Arabian Environment to Improve Lactic Acid Production by
Lactobacillus Rhamnosus AW3 Isolated from Date Processing
Waste,” Sustainability, 12(17), 68-99(2020).
86. Zhang, B., Wu, L., Liu, X. and Bao, J., “Plant Proteins as an
Alternative Nitrogen Source for Chiral Purity L-lactic Acid Fermentation
from Lignocellulose Feedstock,” Fermentation, 8(10),
546(2022).
87. Moch Busairi, A., “Effect of Nitrogen Source and Initial Sugar
Concentration on Lactic Acid Fermentation of Pineapple Waste
Using L. delbrueckii,” Teknik, 31(1), 31-34(2010).
88. Wang, Y., Chen, C., Cai, D., Wang, Z., Qin, P. and Tan, T., “The
Optimization of L-lactic Acid Production from Sweet Sorghum
Juice by Mixed Fermentation of Bacillus Coagulans and Lacto-
Bacillus Rhamnosus Under Unsterile Conditions,” Bioresource
Technology, 218, 1098-1105(2016).
89. Michalczyk, A. K., Garbaczewska, S., Morytz, B., Białek, A.
and Zakrzewski, J., “Influence of Nitrogen Sources on D-Lactic
Acid Biosynthesis by Sporolactobacillus laevolacticus DSM 442
Strain,” Fermentation, 7(2), 78(2021).
90. Zhang, Z. Y., Jin, B. and Kelly, J. M., “Production of Lactic Acid
and Byproducts from Waste Potato Starch by Rhizopus Arrhizus:
Role of Nitrogen Sources,” World Journal of Microbiology and
Biotechnology, 23(2), 229-236(2007).
91. De la Torre, I., Ladero, M. and Santos, V., “Production of d-lactic
Acid by Lactobacillus delbrueckii ssp. Delbrueckii from Orange
Peel Waste: Techno-economical Assessment of Nitrogen Sources,”
Applied Microbiology and Biotechnology, 102, 10511-10521(2018).
92. Hetényi, K., Gál, K., Németh, Á. and Sevella, B., “Use of Sweet
Sorghum Juice for Lactic Acid Fermentation: Preliminary Steps
in a Process Optimization,” Journal of Chemical Technology &
Biotechnology, 85(6), 872-877(2010).
93. Yadav, A. K., Bipinraj, N. K., Chaudhari, A. B. and Kothari, R.
M., “Production of L(+) Lactic Acid from Sweet Sorghum, Date
Palm, and Golden Syrup as Alternative Carbon Sources,” Starch
- Stärke, 63(10), 632-636(2011).
94. Tian, X.-J., Jiang, A.-L., Mao, Y.-Q., Wu, B., He, M.-X., Hu, W.,
Chen, J.-H. and Li, W.-J., “Efficient L-lactic Acid Production
From Purified Sweet Sorghum Juice Coupled with Soybean
Hydrolysate as Nitrogen Source by Lactobacillus Thermophilus
A69 Strain,” Journal of Chemical Technology & Biotechnology,
94(6), 1752-1759(2019).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로