Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 2, 2024
Revised September 4, 2024
Accepted September 4, 2024
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Latest issues
테일러 와류 반응기를 활용한 황산-물유리 전구체로부터의 실리카 나노 분말의 합성 및 흡유제 응용
Synthesis and Oil Adsorption Application of Silica Nanopowder from Sulfuric Acid and Sodium Silicate Precursors Using Taylor-vortex Reactor
Abstract
황산과 전구체 물질인 물유리로부터 테일러 와류 반응기를 활용하여 침전법으로 실리카 나노 입자를 합성하였다. 교
반속도, 물유리의 농도 등 나노 분말의 평균 입도를 조절하는 인자들의 영향을 실험 데이터로부터 도출하였으며, 평균
입도 및 표준편차의 차이를 기존 반응기를 활용한 경우와 비교할 수 있었다. 테일러 와류 반응기를 사용할 경우, 상대
적으로 일정한 입도를 갖는 실리카 분말의 합성이 가능함을 확인하였다. 실란 커플링제인 MTCS를 활용하여 실리카
표면에 존재하는 수산기를 메틸기로 치환하여 실리카 입자를 소수성으로 개질하였으며, 소수성 분말의 단위 질량 당
흡유량에 영향을 미치는 표면 개질 조건을 도출하였다. 실리카 분말 1 g당 최대 3.14배의 오일을 흡유할 수 있는 입자
를 제조할 수 있었으며, 오염물의 제거에 유용하게 활용될 수 있을 것으로 기대된다.
Silica nanoparticles were synthesized by precipitation method using a Taylor vortex reactor from sulfuric
acid and water glass as precursor materials. The effects of factors controlling the average particle size of the nanopowders,
such as stirring speed and concentration of water glass, were derived from the experimental data, and the differences in
average particle size and standard deviation were compared with those of a conventional reactor. It was found that the
Taylor vortex reactor can be used to synthesize silica powder with a relatively uniform particle size. Utilizing MTCS, a
silane coupling agent, the silica particles were modified to be hydrophobic by replacing the hydroxyl groups on the silica
surface with methyl groups, and the surface modification conditions affecting the amount of oil absorption per unit mass
of the hydrophobic powder were derived. Particles absorbing 3.14 times more oil per gram of silica powder were
prepared, and are expected to be useful in the removal of contaminants.
References
Fluid Flow Characteristics in Taylor Reactor Using Computational
Fluid Dynamics,” Korean Soc. Mech. Eng. B., 40(1), 9-
19(2016).
2. Kim, W. S., “Application of Taylor Vortex to Crystallization,” J.
Chem. Eng. Jpn., 47(2), 115-123(2014).
3. Hur, J. U., Choi, J. S., Choi, S. C. and An, G. S., “Highly Dispersible
Fe3O4 Nanoparticles via Anionic Surface Modification,” J. Kor.
Ceram. Soc., 57, 80-84(2020).
4. Kai, C. M., Kong, C., Zhang, F. J., Li, D. C., Wang, Y. R. and Oh,
W. C., “In Situ Growth of CdS Spherical Nanoparticles/Ti3C2
MXene Nanosheet Heterojunction with Enhanced Photocatalytic
Hydrogen Evolution,” J. Kor. Ceram. Soc., 59(3), 302-311(2022).
5. Kumaresan, L., Shanmugavelayutham, G., Surendran, S. and Sim,
U., “Thermal Plasma Arc Discharge Method for High-yield Production
of Hexagonal AlN Nanoparticles: Synthesis and Characterization,”
J. Kor. Ceram. Soc., 59(3), 338-349(2022).
6. Kim, J. Y., Kim, H. S., Lee, N. H., Kim, T. H., Kim, H. S., Yu, T.
K., Song, I. C., Moon, W. K. and Hyeon, T. H., “Multifunctional
Uniform Nanoparticles Composed of a Magnetite Nanocrystal
Core and a Mesoporous Silica Shell for Magnetic Resonance
and Fluorescence Imaging and for Drug Delivery,” Angew. Chem.
Int. Ed. Engl., 47(44), 8438-8441(2008).
7. Nguyen, H. H., Nguyen, T. T. H., Kim, J. K. and Cho, Y. S.,
“Synthesis of Silica Nanoparticles from Sodium Silicate and
Carbon Dioxide as Reactants,” Arch. Metall. Mater., 69, 453-
457(2024).
8. Nguyen, H. H., Park, S. H., Tran, Q. H., Jeong, J. H. and Cho, Y.
S., “Synthesis of Silica Nanopowder from Hydrochloric Acid
and Potassium Silicate Precursor Using Taylor-vortex Reactor,”
J. Kor. Ceram. Soc., 61(1), 178-188(2024).
9. Jung, C. Y., Kim, J. S., Chang, T. S., Kim, S. T., Lim, H. J. and
Koo, S. M., “One-step Synthesis of Structurally Controlled Silicate
Particles from Sodium Silicates Using a Simple Precipitation
Process,” Langmuir., 26(8), 5456-5461(2010).
10. Quarch, K., Durand, E., Schilde, C., Kwade, A. and Kind, M.,
“Mechanical Fragmentation of Precipitated Silica Aggregates,”
Chem. Eng. Res. Des., 88(12), 1639-1647(2010).
11. Cho, Y. S. and Shin, C. H., “Synthesis of Monodisperse Silica
Particles using Rotating Cylinder Systems,” Korean Chem. Eng.
Res., 54(6), 792-799(2016).
12. Stober, W., Fink, A. and Bohn, E., “Controlled Growth of Monodisperse
Silica Spheres in the Micron Size Range,” J. Colloid
Interface Sci., 26(1), 62-69(1968).
13. Hench, L. L. and West, J. K., “The Sol-gel Process,” Chem. Rev.,
90(1), 33-72(1990).
14. Jal, P. K., Sudarshan, M., Saha, A., Patel, S. and Mishra, B. K.,
“Synthesis and Characterization of Nanosilica Prepared by
Precipitation Method,” Colloids Surf. A Physicochem. Eng. Asp.,
240(1-3), 173-178(2004).
15. Gangopadhyay, A. K., Sellers, M. E., Bracker, G. P., Holland-
Moritz, D., Van Hoesen, D. C., Koch, S., Galenko, P. K., Pauls,
A. K., Hyers, R. W. and K. F. Kelton, K. F., “Demonstration of
the Effect of Stirring on Nucleation From Experiments on the
International Space Station using the ISS-EML Facility,” NPJ
Microgravity, 7(31), 1-31(2021).
16. Choi, J. S. and An, S. J., “The Effect of pH on Synthesis of
Nano-Silica Using Water Glass,” Korean J. Mater. Res., 25(4),
209-213(2015).
17. Kim, H. S., “A Study on the Control of Structure Characteristics
of Porous Silica,” J. Kor. Ins. Chem. Eng., 27(3), 299-308(1989).
18. Music, S., Filipovic-Vincekovic, N. and Sekovanic, L., “Precipitation
of Amorphous SiO2 Particles and Their Properties,” Braz.
J. Chem. Eng., 28, 89-94(2011).
19. Joni, I., Rukiah, R. and Panatarani, C., “Synthesis of Silica Particles
by Precipitation Method of Sodium Silicate: Effect of Temperature,
pH and Mixing Technique,” AIP Conf. Proc., 2219(1),
(2020).
20. Martinez, J. R., Palomares-Sanchez, S., Ortega-Zarzosa, G., Ruiz,
F. and Chumakov, Y., “Rietveld Refinement of Amorphous SiO2
Prepared via Sol-gel Method,” Mater. Lett., 60(29-30), 3526-
3529(2006).
21. Jang, H. J., Chang, M. J., Nam, K. H. and Chung, D. W., “Surface
Modification of Nano Silica Prepared by Sol-gel Process and
Subsequent Application Towards Gas-barrier Films,” Appl. Chem.
Eng., 30(1), 68-73(2019).
22. Song, S. K., Kim, J. H., Hwang, K. S. and Ha, K. R., “Spectroscopic
Analysis of Silica Nanoparticles Modified with Silane
Coupling Agent,” Korean J. Chem. Eng., 49(2), 181-186(2011).
23. Kurjata, J., Rozga-Wijas, K. and Stanczyk, W., “Investigation of
Hydrolysis and Condensation of Methyltriethoxysilane in Aqueous
Systems,” Eur. J. Chem., 4(4), 343-349(2013).
24. Chen, K., Li, P., Li, X., Liao, C., Li, X. and Zuo, Y., “Effect of
Silane Coupling Agent on Compatibility Interface and Properties
of Wheat Straw/polylactic Acid Composites,” Int. J. Biol. Macromol.,
182, 2108-2116(2021).
25. Kwok, D. Y. and Neumann, A. W., “Contact Angle Measurement
and Contact Angle Interpretation,” Adv. Colloid Interface Sci.,
81(3), 167-249(1999).
26. Mahltig, B. and Bottcher, H., “Modified Silica Sol Coatings for
Water-repellent Textiles,” J. Sol-Gel Sci. Technol., 27(1), 43-52
(2003).