Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 5, 2024
Revised August 22, 2024
Accepted September 11, 2024
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Latest issues
공중합 아라미드의 굴곡피로성능 평가에 관한 연구
A Study on the Flexural Fatigue Performance Evaluation of Copolymer Aramid Fiber
Abstract
공중합 아라미드는 기존의 파라계 아라미드의 단점인 낮은 신축성을 개선한 섬유로서 굴곡 성능이 우수한 특성을
갖고있지만 굴곡피로 성능을 평가할 수 있는 평가법은 부재한 실정이다. 현재 국내에서는 공중합 아라미드 개발을 위
해 다양한 연구가 진행되고 있으며 아라미드의 신뢰성을 세계적 수준까지 발전시키기 위해서는 굴곡성능을 평가할 수
있는 평가법 개발이 필요한 상황이다. 본 연구에서는 공중합 아라미드의 굴곡피로성능을 평가할 수 있는 평가장치와
평가법을 개발하고 아라미드의 굴곡피로성능을 분석하였다. 굴곡피로시험기의 굴곡부는 마찰을 최소화 하기 위해 롤
러 재질을 세라믹 재질로 선정하였으며 롤러 형태는 회전형태로 제작하였다. 롤러의 직경은 최소허용곡률을 계산하여
10 mm로 선정하였다. 굴곡피로시험을 통해 B10 수명을 산출하였으며 파라계 아라미드는 125,770회, 공중합 아라미드
598,150회, ANF(Aramid Nano Fiber)로 표면처리한 공중합 아라미드는 589,073회로 나타내었다. S-N선도를 통해 하
중 변화에 따른 피로 수명 관계를 파악하였으며 고하중 조건에서도 공중합 아라미드 가 파라계 아라미드 보다 우수한
굴곡피로 성능을 나타내고 ANF로 표면처리한 공중합 아라미드 또한 우수한 굴곡 피로 성능을 나타내는 것을 확인하였다.
Although copolymer aramid is a fiber with excellent flexural performance, there is no test method to
evaluate flexural fatigue performance. Various studies are currently being conducted in korea to develop copolymer
aramid, and in order to develop the reliability of aramid fibers to a global level, it is necessary to develop a test method
to evaluate the flexural fatigue performance of aramid fibers. In this study, we developed an test equipment and test
method that can evaluate the flexural fatigue performance of copolymer aramid and analyzed the flexural fatigue
performance of aramid fiber. Flexing rollers are made of ceramic materials and rotating shapes to minimize friction. The
diameter of the roller was set to 10 mm by calculating the minimum allowable curvature. The B10 life was calculated
through a flexural fatigue test, and the para-aramid was 125,770 cycles, the copolymer aramid was 598,150 cycles, and
the aramid nano fiber(ANF) coated copolymer aramid was 589,073 cycles. Through the S-N diagram, the fatigue life
relationship according to the load change was confirmed. copolymer aramid fibers exhibit better flexural fatigue
performance than para-aramid fibers at high loads. The ANF coated copolymer aramid also exhibits excellent flexural
fatigue performance.
References
Fiber-reinforced Concrete: A Review,” J. Mater. Sci.,
51(14), 6517-6551(2016).
2. Han, D., Ma, Q., Wang, J., Chen, H., Wang, C. and Han, W.,
“Effect of the Addition of Different Amounts of Aramid Fibers
on Metal Friction and Wear during Mixing,” Polymers, 14(14),
2961-2979(2022).
3. Sreekumar, P. A., Thomas, S. P., Saiter, J. M., Joseph, K., Unnikrishnan,
G. and Thomas, S., “Effect of Fiber Surface Modification on
the Mechanical and Water Absorption Characteristics of Sisal/
polyester Composites Fabricated by Resin Transfer Molding,”
Compos. Part A Appl. Sci. Manuf., 40(11), 1777-1784(2009).
4. Lee, S. T., Kim, B. S., Choi, H. N., Lee, K. Y. and Lee, S. G.,
“Interfacial Adhesion Properties of Plasma Treated Aramid
Fiber with Chloroprene Rubber,” Text. Sci. Eng., 47(3), 205-211
(2010).
5. Matsuo, T., “Fiber Material for Advanced Technical Textiles,”
Text. Prog., 40(2), 87-121(2008).
6. Inagaki, N., Tasaka, S., Kawai, H. and Yamada, Y., “Surface
Modification of Aromatic Polyamide Film by Remote Oxygen
Plasma,” J. Polym. Sci., 64(5), 831-840(1997).
7. Park, J. H., Lee, S. H., Jang, H. D., Kim. G. S. and Yang, J. S.,
“Prediction of Characteristics Life of the Rubber Gasket,” J.
Appl. Rel., 10(4), 213-235(2010).
8. Wang, L., Shi, Y., Chen, S., Wang, W., Tian, M. and Ning, N.,
“Highly Efficient Mussel-like Inspired Modification of Aramid
Fibers by UV-accelerated Catechol/polyamine Deposition Followed
Chemical Grafting for High-performance Polymer Composites,”
Chem. Eng. J., 314(15), 583-593(2017).
9. Nasser, J., Lin, J., Steinke, K. and Sodano, H., “Enhanced Interfacial
Strength of Aramid Fiber Reinforced Composites Through
Adsorbed Aramid Nanofiber Coatings,” Compos. Sci. Technol.,
174(12), 125-133(2019).
10. Park, G. R., Kim, H. R., Jeong, G. Y., Kim, D. H., Noh, S. C.,
Gwon, D. J., Choi, M. C. and Koo, J. S., “Investigation of Copoly-
para-aramid Fiber Dispersion in Chloroprene Rubber Matrix
and Improvement of Dispersibility Through Fiber Surface Modification,”
Elastomers Compos., 57(4), 175-180(2022).
11. Park, S. M., Kwon, I. J., Sim, J. H., Lee, J. H., Kim, S. S., Lee,
M. C. and Lee, J. S., “Improving the Photo-stability of p-aramid
Fiber by TiO2 Nanosol,” J. Korean Soc. Dye. and Finish., 25(2),
126-133(2013).
12. Epstein, M. E. and Rosenthal, A. J., “Spinning of Polyamides
from Sulfuric Acid Solution : Polymer Solubility and Coagulation
Mechanisms,” Text. Res. J., 36(9), 813-821(1966).
13. Morton, W. and Hearle, W., “Physical Properties of Textile Fibres,”
Woodhead Publishing in Textiles, 4th, ed., England(2005).
14. Kimura, Y., Tsuchida, A. and Katsuraya, K., “High-Performance
and Specialty Fibers,” The Society of Fiber Science and Technology,
Japan(2016).
15. Lee, J. H., Lee, J. D., Park, S. M. and Lee, J. W., “Adhesion
Between Surfaces Treated with Aramid Fiber and Silicone/Fluorine
Rubber,” Text. Sci. Eng., 55(5), 349-355(2018).
16. Zhang, B., Lian, T., Shao, X., Tian, M., Ning, N., Zhang, L. and
Wang, W., “Surface Coating of Aarmid Fiber by a Graphene/
Aramid Nanofiber Hybrid Material to Enhance Interfacial Adhesion
with Rubber Matrix,” Ind. Eng. Chem. Res., 60(6), 2472-
2480(2021).
17. Yeo, D. H., Lee, J. H., Lee, J. H., Yu, S. H., Park, Y. T., Sung, J. H.
and Sim, J. H., “A Study on the Flow Analysis of Air-gap Wet
Spinneret according to the Viscosity of Copolymerized Aramid
Polymer,” J. Korean Soc. Dye. and Finish., 34(1), 27-37(2022).
18. Shin, S. H., Jang, J. S., Kim, E. Y. and Kim, H. D., “Performance
Improvement of Aramid / Epoxy Composite by Surface Treatment
of Aramid Fiber,” Polym. Korea, 20(1), 134-142(1996).
19. Vickers, P. E., Watts, J. F., Perruchot, C. and Chehimi, M. M.,
“The Surface Chemistry and Acid-base Properties of a PANbased
Carbon Fibre,” Carbon, 38(5), 675-689(2000).
20. Fukunaga, A., Ueda, S. and Magumo, M., “Anodic Surface Oxidation
Mechanisms of PAN-based and Pitch-based Carbon Fibres,”
J. Mater. Sci., 34(12), 2851-2854(1999).
21. Plawky, U., Londschien, M. and Michaeli, W., “Surface Modification
of An Aramid Fibre Treated in a Low-temperature Microwave
Plasma,” J. Mater. Sci., 31(22), 6043-6053(1996).
22. Kim, E. M. and Jang, J. H., “Surface Modification of Meta-aramid
Films by UV/ozone Irradiation,” Fibers. Polym., 11(5), 677-
682(2010).
23. Yoon, H. J., Oh, D. K., Jo, J. H. and Lee, J. D., “Study on the
Interfacial Stability of Rubber/copolymer Aramid by Surface
Treatment of Copolymer Aramid Nano Fiber,” Polym. Korea,
48(2), 158-164(2024).
24. Miraftab, M., “Flex Fatigue of Textile Fibres,”Woodhead Publishing
in Textiles, U.K.(2009).
25. Jariwala, B. C., “The Study of Kink Bands and Flex Failure in
Nylon 6.6 and Polyester Fibres,” Ph.D. Dissertation, U.M.I.S.T.,
Manchester(1974).