ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Overall

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 9, 2024
Revised April 2, 2024
Accepted April 3, 2024
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Read

암모니아 액화 시나리오에 따른 그린암모니아 합성 공정의 경제성 및 환경 영향도 평가

Techno-economic Analysis and Environmental Impact Assessment of a Green Ammonia Synthesis Process Under Various Ammonia Liquefaction Scenarios

전남대학교 1한양대학교
Chonnam National University 1Hanyang University
Korean Chemical Engineering Research, May 2024, 62(2), 163-172(10), https://doi.org/10.9713/kcer.2024.62.2.163 Epub 1 May 2024
downloadDownload PDF

Abstract

본 연구에서는 이산화탄소를 배출하지 않고 수소를 운반할 수 있는 그린 암모니아 공정의 효율적인 설계를 위해 암 모니아 액화 시나리오를 다르게 설계하고 이에 대한 경제성 및 환경 영향도 평가를 수행하였다. 순도 99.9 mol%의 148 kmol/hr 액화 암모니아를 생산물로 얻는 것을 목표로 설정하였고 후처리 단계에서 냉각단계 전 기-액분리를 통해 일정량의 액화 암모니아를 분리하고 고압에서 냉각하는 고압 냉각 공정과 기-액분리 과정 없이 바로 감압 후 냉각하 여 기-액분리를 시켜 최종생산물을 얻는 저압 냉각 공정의 두 가지 케이스를 설정했다. 이에 대한 타당성 평가를 위해 Aspen Plus를 활용한 시뮬레이션을 수행하였다. 고압 냉각 공정은 많은 기-액분리 공정과 열교환기를 사용하여 초기 장치 비용이 부담되지만 상대적으로 총 유틸리티 비용이 91.03 $/hr, duty가 2.81 Gcal/hr 낮아 유지비용이 적게 든다. 저압 냉각 공정은 초기 장치 비용이 낮고 운전이 용이하지만 급격한 압력 강하로 운전이 불안정한 것을 확인 하였다. 환경 영향도 평가 결과 고압 냉각 공정이 저압 냉각 공정보다 전력 사용량을 기준으로 산출한 이산화탄소 환산톤 배 출 계수가 0.83 tCO2eq 더 낮아 환경친화적 임을 확인할 수 있었다. 본 연구 결과를 통해 향후 그린 암모니아 합성 공 정에서 여러 상황에 적절한 설계안을 도출할 수 있는 데이터베이스를 확보할 수 있다.

In this study, two different scenarios for ammonia liquefaction in the green ammonia manufacturing process were proposed, and the economic-feasibility and environmental impact of each scenario were analyzed. The two liquefaction processes involved gas-liquid separation before cooling at high pressure (high pressure cooling process) or after decompression without the gas-liquid separation (low pressure cooling process). The high-pressure cooling process requires higher capital costs due to the required installation of separation units and heat exchangers, but it offers relatively lower total utility costs of 91.03 $/hr and a reduced duty of 2.81 Gcal/hr. In contrast, although the low-pressure cooling process is simpler and cost-effective, it may encounter operational instability due to rapid pressure drops in the system. Environmental impact assessment revealed that the high-pressure cooling process is more environmentally friendly than the low-pressure cooling process, with an emission factor of 0.83 tCO2eq less than the low-pressure cooling process, calculated based on power usage. Consequently, the outcomes of this study provide relevant scenario and a database for green ammonia synthesis process adaptable to various process conditions.

References

1. Kumar, S. S. and Lim, H., “An Overview of Water Electrolysis
Technologies for Green Hydrogen Production,” Energy reports 8,
13793-13813(2022).
2. Sazali, N., “Emerging Technologies by Hydrogen: A Review,”
Int J Hydrogen Energ 45, 18753-18771(2020).
3. Zainal, B. S. et al. “Recent Advancement and Assessment of Green
Hydrogen Production Technologies,” Renewable and Sustainable
Energy Reviews 189, 113941 (2024).
4. Glenk, G. and Reichelstein, S., “Economics of Converting Renewable Power to Hydrogen,” Nature Energy 4, 216-222(2019).
5. Wan, Z., Tao, Y., Shao, J., Zhang, Y. and You, H., “Ammonia as
an Effective Hydrogen Carrier and a Clean Fuel for Solid Oxide
Fuel Cells,” Energy Conversion and Management 228, 113729
(2021).
6. Makepeace, J. W. et al. “Reversible Ammonia-based and Liquid
Organic Hydrogen Carriers for High-density Hydrogen Storage:
Recent Progress,” Int J Hydrogen Energ 44, 7746-7767(2019).
7. Wang, W., Herreros, J. M., Tsolakis, A. and York, A. P., “Ammonia as Hydrogen Carrier for Transportation; Investigation of the
Ammonia Exhaust Gas Fuel Reforming,” Int J Hydrogen Energ
38, 9907-9917(2013).
8. Aika, K.-I. et al. Ammonia: Catalysis and Manufacture. (Springer
Science & Business Media, 2012).
9. Smith, C., Hill, A. K. and Torrente-Murciano, L., “Current and
Future Role of Haber–Bosch Ammonia in a Carbon-free Energy
Landscape,” Energy & Environmental Science 13, 331-344(2020).
10. Sun, Z. et al. Modeling and Simulation of Dynamic Characteristics of a Green Ammonia Synthesis System,” Energy Conversion
and Management 300, 117893(2024).
11. Zheng, J., Jiang, L., Lyu, Y., Jiang, S. P. and Wang, S. Green Synthesis of Nitrogen-to-ammonia Fixation: Past, Present, and Future,”
Energy & Environmental Materials 5, 452-457(2022).
12. Li, C., Wang, T. and Gong, J., “Alternative Strategies Toward Sustainable Ammonia Synthesis,” Transactions of Tianjin University
26, 67-91(2020).
13. Santhosh, C. and Sankannavar, R., “A Comprehensive Review
on Electrochemical Green Ammonia Synthesis: From Conventional to Distinctive Strategies for Efficient Nitrogen Fixation,”
Applied Energy 352, 121960(2023).
14. Rouwenhorst, K. H. et al. “Plasma-driven Catalysis: Green Ammonia Synthesis with Intermittent Electricity,” Green chemistry 22,
6258-6287(2020).
15. Humphreys, J., Lan, R. and Tao, S., “Development and Recent
Progress on Ammonia Synthesis Catalysts for Haber–Bosch Process,” Advanced Energy and Sustainability Research 2, 2000043
(2021).
16. Lee, B. et al. Pathways to a Green Ammonia Future,” ACS Energy
Letters 7, 3032-3038(2022).
17. Chehade, G. and Dincer, I. Progress in Green Ammonia Production as Potential Carbon-free Fuel,” Fuel 299, 120845(2021).
18. Verleysen, K., Parente, A. and Contino, F., How Sensitive is a
Dynamic Ammonia Synthesis Process? Global Sensitivity Analysis of a Dynamic Haber-Bosch Process (for flexible seasonal
energy storage),” Energy 232, 121016(2021)

19. Tripodi, A., Compagnoni, M., Bahadori, E. and Rossetti, I., “Process Simulation of Ammonia Synthesis Over Optimized Ru/C
Catalyst and Multibed Fe Plus Ru Configurations,” J. Ind. Eng.
Chem, 66, 176-186(2018).
20. Yoshida, M., Ogawa, T., Imamura, Y. and Ishihara, K. N., “Economies of Scale in Ammonia Synthesis Loops Embedded with
iron- and Ruthenium-based Catalysts,” Int J Hydrogen Energ 46,
28840-28854(2021).
21. Gillespie, L. J. and Beattie, J. A., “The Thermodynamic Treatment
of Chemical Equilibria in Systems Composed of Real Gases. I. An
Approximate Equation for the Mass Action Function Applied to
the Existing Data on the Haber Equilibrium,” Physical Review
36, 743(1930).
22. Peng, D.-Y. and Robinson, D. B., “A New Two-constant Equation
of State,” Industrial & Engineering Chemistry Fundamentals 15,
59-64(1976).
23. Hondo, H., “Life Cycle GHG Emission Analysis of Power Generation Systems: Japanese Case,” Energy 30, 2042-2056(2005).
24. Ministry of Environment, Guidance on Public Sector GHG Target
Management Operations (2022) (Written in Korean).
25. Greenhouse Gas Inventory and Research Center, Ministry of
Environment. Approved National GHG Emissions. Absorption
Factor for 2021 (2021) (Written in Korean).
26. Peters, M. S., Timmerhaus, K. D. and West, R. E., Plant Design
and Economics for Chemical Engineers. Vol. 4 (McGraw-Hill
New York, 2003).
27. Park, K., Jang, Y. H., Kim, M.-G., Yang, D. R. and Hong, S.,
Comprehensive Analysis of a Hybrid FO/crystallization/RO Process
for Improving its Economic Feasibility to Seawater Desalination,” Water Research 171, 115426(2020).
28. Nicol, W., Hildebrandt, D. and Glasser, D., “Crossing Reaction
Equilibrium in an Adiabatic Reactor System,” Developments in
Chemical Engineering and Mineral Processing 6, 41-54(1998).
29. Korea Occupational Safety and Health Agency, D-34-201 Technical
Guidance on the Storage of Anhydrous Ammonia (2013) (Written
in Korean).
30. https://www.rutherfordtitan.com/liquid-nitrogen-generators/liquid-nitrogen-price-usa/?v=7516fd43adaa. (Acces date : 2024/01/04).
31. Jaeschke, M., Hinze, H. M., Achtermann, H. J. and Magnus, G.,
“PVT Data from Burnett and Refractive Index Measurements for
the Nitrogen—hydrogen System from 270 to 353 K and Pressures to 30 MPa,” Fluid Phase Equilibria 62, 115-139(1991).
32. Zander, M. and Thomas, W., “Some Thermodynamic Properties
of Liquid Ammonia: PVT Data, Vapor Pressure, and Critical
Temperature,” Journal of Chemical and Engineering Data 24, 1-
2(1979).
33. Calm, J. M., “Emissions and Environmental Impacts from Airconditioning and Refrigeration Systems,” International Journal
of Refrigeration 25, 293-305(2002).
34. Calm, J. M. and Hourahan, G., “Refrigerant Data Update,” Hpac
Engineering 79, 50-64(2007).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로