Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
DISSIPATIVE STRUCTURES OF AUTOCATALYTIC REACTIONS IN TUBULAR FLOW REACTORS
Korean Journal of Chemical Engineering, October 1993, 10(4), 226-234(9), 10.1007/BF02705272
Download PDF
Abstract
Dissipative structures of autocatalytic reactions with initially uniform concentrations are studied in tubular flow reactors. A unique steady state exists in a continuous stirred tank reactor. Linear stability analysis predicts either a stable node, a focus or an unstable saddle-focus. Sustained oscillations around the unstable focus can occur for high values of Damkohler number. In distributed parameter systems, travelling, waves with pseudo-constant patterns are observed. With intermediate values of Damkohler number, single or multiple standing waves are obtained. The temporal behavior indicates also the appearance of retriggering or echo waves. For high values of Damkohler number, both single peak and complex multipeak oscillations are found. In the cell model, both regular oscillations near the inlet and chaotic behavior downstream are observed. In the dispersion model, higher Peclet numbers eliminate the oscillations. The spatial profile shows a train of pulsating waves for the discrete model and a single pulsating or solitary wave for the continuous model.
References
Lotka AJ, Elements of Mathematical Biology, Dover (1956)
Nicolis G, Prigogine I, Self-Organization in Non-equilibrium System, John Wiley, New York (1977)
Erneux T, Herschkowitz-Kaufman M, Bull. Math. Biol., 41, 21 (1979)
Herschkowitz-Kaufman M, Bull. Math. Biol., 37, 589 (1975)
Prigogine I, Lefever R, J. Chem. Phys., 48, 1695 (1968)
Vavilin VA, Zhabotinskii AM, Kinet. Catal., 10, 538 (1969)
Zhabotinskii AM, Zaikin AN, Kinet. Catal., 12, 516 (1971)
Frank-Kamanetskii DA, Diffusion and Heat Transfer in Chemical Kinetics, Plenum Press, New York (1969)
Yamazaki I, Nakamura S, Yokota K, Nature, 222, 794 (1969)
Tatterson DF, Hudson JL, Chem. Eng. Commun., 1, 3 (1973)
Zhabotinskii AM, Zaikin AN, J. Theor. Biol., 40, 45 (1973)
Marek M, Biophys. Chem., 3, 263 (1975)
Graziani KR, Hudson JL, Schmitz RA, Chem. Eng. J., 12, 9 (1976)
Schmitz RA, Graziani KR, Hudson JL, Chem. Phys., 67, 3040 (1977)
Rossler OE, Nature, 271, 89 (1978)
Simoyi RH, Roux JC, Swinney HL, Physica, 8D, 257 (1983)
Roux JC, Physica, 7D, 57 (1983)
Hlavacek V, Sinkule J, Kubicek M, J. Theor. Biol., 36, 283 (1972)
Sinkule J, Hlavacek V, Vortruba J, Tvrdik I, Chem. Eng. Sci., 29, 689 (1974)
Puszynski J, Snita D, Hlavacek V, Hofmann H, Chem. Eng. Sci., 36, 1605 (1981)
Gray P, Scott SK, Chem. Eng. Sci., 38, 29 (1983)
Pisman LM, Chem. Eng. Sci., 38, 1950 (1980)
Neu JC, SIAM J. Appl. Math., 36, 509 (1979)
Krinsky VI, Sci. Publ., 20, 59 (1968)
Tomita K, Kai T, Prog. Theor. Phys., 61, 54 (1979)
Fujisaka H, Phys. Lett., A66, 450 (1978)
Marek M, Schreiber I, Physica, 5D, 258 (1982)
Kim SH, Hlavacek V, Physica, 10D, 413 (1984)
Wen CY, Fan LT, Models for Flow Systems and Chemical Reactors, Marcel Dekker, Inc., New York (1975)
Nicolis G, Prigogine I, Self-Organization in Non-equilibrium System, John Wiley, New York (1977)
Erneux T, Herschkowitz-Kaufman M, Bull. Math. Biol., 41, 21 (1979)
Herschkowitz-Kaufman M, Bull. Math. Biol., 37, 589 (1975)
Prigogine I, Lefever R, J. Chem. Phys., 48, 1695 (1968)
Vavilin VA, Zhabotinskii AM, Kinet. Catal., 10, 538 (1969)
Zhabotinskii AM, Zaikin AN, Kinet. Catal., 12, 516 (1971)
Frank-Kamanetskii DA, Diffusion and Heat Transfer in Chemical Kinetics, Plenum Press, New York (1969)
Yamazaki I, Nakamura S, Yokota K, Nature, 222, 794 (1969)
Tatterson DF, Hudson JL, Chem. Eng. Commun., 1, 3 (1973)
Zhabotinskii AM, Zaikin AN, J. Theor. Biol., 40, 45 (1973)
Marek M, Biophys. Chem., 3, 263 (1975)
Graziani KR, Hudson JL, Schmitz RA, Chem. Eng. J., 12, 9 (1976)
Schmitz RA, Graziani KR, Hudson JL, Chem. Phys., 67, 3040 (1977)
Rossler OE, Nature, 271, 89 (1978)
Simoyi RH, Roux JC, Swinney HL, Physica, 8D, 257 (1983)
Roux JC, Physica, 7D, 57 (1983)
Hlavacek V, Sinkule J, Kubicek M, J. Theor. Biol., 36, 283 (1972)
Sinkule J, Hlavacek V, Vortruba J, Tvrdik I, Chem. Eng. Sci., 29, 689 (1974)
Puszynski J, Snita D, Hlavacek V, Hofmann H, Chem. Eng. Sci., 36, 1605 (1981)
Gray P, Scott SK, Chem. Eng. Sci., 38, 29 (1983)
Pisman LM, Chem. Eng. Sci., 38, 1950 (1980)
Neu JC, SIAM J. Appl. Math., 36, 509 (1979)
Krinsky VI, Sci. Publ., 20, 59 (1968)
Tomita K, Kai T, Prog. Theor. Phys., 61, 54 (1979)
Fujisaka H, Phys. Lett., A66, 450 (1978)
Marek M, Schreiber I, Physica, 5D, 258 (1982)
Kim SH, Hlavacek V, Physica, 10D, 413 (1984)
Wen CY, Fan LT, Models for Flow Systems and Chemical Reactors, Marcel Dekker, Inc., New York (1975)