Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Deformation and Breakup of a Second-Order Fluid Droplet in an Electric Field
Department of Chemical Engineering, Korea Advanced Institute of Science and Technology, Taejon, Korea
Korean Journal of Chemical Engineering, September 1999, 16(5), 585-594(10), 10.1007/BF02708136
Download PDF
Abstract
The effects of elastic property on the deformation and breakup of an uncharged drop in a uniform electric field are investigated theoretically using the second-order fluid model as a constitutive equation. Two dimensionless numbers, the electric capillary number (C) and the Deborah number (De), the dimensionless parammeters governing the problem. The asymptotic analytic solution of the nonlinear free boundary problem is determined by utilizing the method of domain perturbation in the limit of small mathcal C and small De. The asymptotic solution provides the limiting point of C above which no steady-state drop shape exists. The linear stability theory shows that the elastic property of fluids give either stabilizing or destabilizing effect on the drop, depending on the deformation mode.
References
Ajayi OO, Proc. R. Soc. Lond. A, 364, 499 (1978)
Arp PA, Foister RT, Mason SG, Adv. Colloid Interface Sci., 12, 295 (1980)
Barthes-Biesel D, Acrivos A, J. Fluid Mech., 61, 1 (1973)
Basaran OA, Scriven LE, Phys. Fluids, A1, 799 (1989)
Bird RB, Armstrong RC, Hassager O, "Dynamics of Polymeric Liquids," 2nd ed., John Wiley, New York (1987)
Elmendorp JJ, Maalcke RJ, Polym. Eng. Sci., 25, 1041 (1985)
Garton CG, Krasucki Z, Proc. R. Soc. Lond. A, A280, 211 (1964)
Ha JW, Yang SM, J. Colloid Interface Sci., 175(2), 369 (1995)
Ha JW, Yang SM, J. Colloid Interface Sci., 206(1), 195 (1998)
Ha JW, Yang SM, Phys. Fluids, 11, 1029 (1999)
Ha JW, Yang SM, Colloid Interface Sci., 213, 92 (1999)
Kang IS, Leal LG, J. Fluid Mech., 187, 231 (1988)
Leal LG, J. Fluid Mech., 69, 305 (1975)
Leal LG, "Laminar Flow and Convective Transport Processes Scaling Principles and Asymptotic Analysis," Butterworth-Heinemann, Boston (1992)
Mackay ME, Boger DV, J. Non-Newton. Fluid Mech., 22, 235 (1987)
Melcher JR, Taylor GI, Annu. Rev. Fluid Mech., 1, 111 (1969)
Miksis MJ, Phys. Fluids, 24, 1967 (1981)
Moriya S, Adachi K, Kotaka T, Langmuir, 2, 155 (1986)
Saville DA, Phys. Fluids, 13, 2987 (1970)
Saville DA, Annu. Rev. Fluid Mech., 29, 27 (1997)
Taylor GI, Proc. R. Soc. Lond. A, A291, 159 (1964)
Taylor GI, Proc. R. Soc. Lond. A, A313, 453 (1969)
Taylor GI, Proc. R. Soc. Lond. A, A291, 159 (1966)
Torza S, Cox RG, Mason SG, Phil. Trans. R. Soc. Lond., 269, 259 (1971)
Tam KC, Tiu C, J. Non-Newton. Fluid Mech., 31, 163 (1989)
Venugopal G, Krause S, Macromolecules, 25, 4626 (1992)
Vizika O, Saville DA, J. Fluid Mech., 239, 1 (1992)
Yang SM, Feng ZC, Leal LG, J. Fluid Mech., 247, 417 (1993)
Xi K, Krause S, Macromolecules, 31(12), 3974 (1998)
Arp PA, Foister RT, Mason SG, Adv. Colloid Interface Sci., 12, 295 (1980)
Barthes-Biesel D, Acrivos A, J. Fluid Mech., 61, 1 (1973)
Basaran OA, Scriven LE, Phys. Fluids, A1, 799 (1989)
Bird RB, Armstrong RC, Hassager O, "Dynamics of Polymeric Liquids," 2nd ed., John Wiley, New York (1987)
Elmendorp JJ, Maalcke RJ, Polym. Eng. Sci., 25, 1041 (1985)
Garton CG, Krasucki Z, Proc. R. Soc. Lond. A, A280, 211 (1964)
Ha JW, Yang SM, J. Colloid Interface Sci., 175(2), 369 (1995)
Ha JW, Yang SM, J. Colloid Interface Sci., 206(1), 195 (1998)
Ha JW, Yang SM, Phys. Fluids, 11, 1029 (1999)
Ha JW, Yang SM, Colloid Interface Sci., 213, 92 (1999)
Kang IS, Leal LG, J. Fluid Mech., 187, 231 (1988)
Leal LG, J. Fluid Mech., 69, 305 (1975)
Leal LG, "Laminar Flow and Convective Transport Processes Scaling Principles and Asymptotic Analysis," Butterworth-Heinemann, Boston (1992)
Mackay ME, Boger DV, J. Non-Newton. Fluid Mech., 22, 235 (1987)
Melcher JR, Taylor GI, Annu. Rev. Fluid Mech., 1, 111 (1969)
Miksis MJ, Phys. Fluids, 24, 1967 (1981)
Moriya S, Adachi K, Kotaka T, Langmuir, 2, 155 (1986)
Saville DA, Phys. Fluids, 13, 2987 (1970)
Saville DA, Annu. Rev. Fluid Mech., 29, 27 (1997)
Taylor GI, Proc. R. Soc. Lond. A, A291, 159 (1964)
Taylor GI, Proc. R. Soc. Lond. A, A313, 453 (1969)
Taylor GI, Proc. R. Soc. Lond. A, A291, 159 (1966)
Torza S, Cox RG, Mason SG, Phil. Trans. R. Soc. Lond., 269, 259 (1971)
Tam KC, Tiu C, J. Non-Newton. Fluid Mech., 31, 163 (1989)
Venugopal G, Krause S, Macromolecules, 25, 4626 (1992)
Vizika O, Saville DA, J. Fluid Mech., 239, 1 (1992)
Yang SM, Feng ZC, Leal LG, J. Fluid Mech., 247, 417 (1993)
Xi K, Krause S, Macromolecules, 31(12), 3974 (1998)