ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 25, 2009
Accepted May 18, 2009
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Two-level multiblock statistical monitoring for plant-wide processes

State Key Laboratory of Industrial Control Technology, Institute of Industrial Process Control, Zhejiang University, Hangzhou 310027, Zhejiang, China
zqge@iipc.zju.edu.cn
Korean Journal of Chemical Engineering, November 2009, 26(6), 1467-1475(9), 10.1007/s11814-009-0283-7
downloadDownload PDF

Abstract

Due to the complexity of plant-wide processes, many of the current multivariate statistical process monitoring techniques are lacking in interpretation of the detected fault, and fault identification also becomes difficult. A new two-level multiblock independent component analysis and principal component analysis (MBICA-PCA) method is proposed in this paper. Different from the conventional method, the new approach can incorporate block information into the high level for global process monitoring. Through the new method, the process monitoring task can be greatly reduced and the interpretation for the process can be made more quickly. When a fault is detected, a two-step fault identification method is proposed. The responsible sub-block is first identified by contribution plots, which is followed by fault reconstruction in the corresponding sub-block for advanced fault identification. A case study of the Tennessee Eastman (TE) process evaluates the feasibility and efficiency of the proposed method.

References

Kresta J, MacGregor JF, Marlin T, Can. J. Chem. Eng., 69, 35 (1991)
Nomikos P, Macgregor JF, AIChE J., 40(8), 1361 (1994)
Chen J, Yen JH, Korean J. Chem. Eng., 20(6), 1000 (2003)
Kim MH, Yoo CK, Korean J. Chem. Eng., 25(5), 947 (2008)
Ku W, Storer RH, Chem. Intell. Lab. Syst., 30, 179 (1995)
Bakshi BR, AIChE J., 44(7), 1596 (1998)
Qin SJ, Comput. Chem. Eng., 22(4-5), 503 (1998)
Li WH, Yue HH, Valle-Cervantes S, Qin SJ, J. Process Control, 10(5), 471 (2000)
Lee S, Yeom S, Lee KS, Korean J. Chem. Eng., 21(3), 575 (2004)
Byun IG, Nam HU, Song SK, Hwang IS, Lee TH, Park TJ, Korean J. Chem. Eng., 22(6), 917 (2005)
Kim KS, Ko JW, Korean J. Chem. Eng., 22(1), 26 (2005)
Lee C, Lee IB, Korean J. Chem. Eng., 25(2), 203 (2008)
Macgregor JF, Jaeckle C, Kiparissides C, Koutoudi M, AIChE J., 40(5), 826 (1994)
Westerhuis JA, Kourti T, MacGregor JF, J. Chemometrics., 12, 301 (1998)
Qin SJ, Valle S, Piovoso MJ, J. Chemometrics., 15, 715 (2001)
Smilde AK, Westerhuis JA, de Jong S, J. Chemometrics., 17, 323 (2003)
Choi SW, Lee IB, J. Process Control, 15(3), 295 (2005)
Cherry GA, Qin SJ, IEEE Trans. Semiconductor Manufacturing, 19, 159 (2006)
Hyvarinen A, Oja E, Neural Network, 13, 411 (2000)
Lee JM, Yoo CK, Lee IB, J. Process Control, 14(5), 467 (2004)
Lee JM, Yoo C, Lee IB, Chem. Eng. Sci., 59(14), 2995 (2004)
Kano M, Tanaka S, Hasebe S, Hashimoto I, Ohno H, Combined multivariate statistical process control, IFAC Symposium on Advanced Control of Chemical Processes (ADCHEM), 303 (2004)
Kano M, Tanaka S, Hasebe S, Hashimoto I, Ohno H, AIChE J., 49(4), 969 (2003)
Kano M, Hasebe S, Hashimoto I, Ohno H, Comput. Chem. Eng., 28(6-7), 1157 (2004)
Ge ZQ, Song ZH, Ind. Eng. Chem. Res., 46(7), 2054 (2007)
Westerhuis J, Gurden S, Smilde A, Chem. Intell. Lab. Syst., 51, 95 (2000)
Dunia R, Qin SJ, AIChE J., 44(8), 1813 (1998)
Dunia R, Qin SJ, Comput. Chem. Eng., 22(7-8), 927 (1998)
Wang HQ, Song ZH, Li P, Ind. Eng. Chem. Res., 41(10), 2455 (2002)
Lieftuche D, Kruger U, Irwin GW, Treasure RJ, IEE Proc.- Control Theory Appl., 153, 437 (2006)
Lieftucht D, Yruger U, Irwin GW, Comput. Chem. Eng., 30(5), 901 (2006)
Yue HH, Qin SJ, Ind. Eng. Chem. Res., 40(20), 4403 (2001)
Hyvarinen A, Neural Computation., 9, 1483 (1997)
Chen Q, Wynne RJ, Goulding P, Sandoz D, Control Eng. Pract., 8, 531 (2000)
Chen Q, Kruger UA, Leung TY, Control Eng. Pract., 12, 267 (2004)
Downs JJ, Vogel EF, Comput. Chem. Eng., 17, 245 (1993)
Chiang LH, Russell EL, Braatz RD, Fault detection and diagnosis in industrial systems, Springle-Verlag, London (2001)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로