Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 17, 2009
Accepted March 11, 2010
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Optimization of single-walled carbon nanotube growth and study of the hysteresis of random network carbon nanotube thin film transistors
School of Chemical Engineering and Bioengineering, University of Ulsan, Deahakro 102, Nam-gu, Ulsan 680-749, Korea
shhur@ulsan.ac.kr
Korean Journal of Chemical Engineering, November 2010, 27(6), 1892-1896(5), 10.1007/s11814-010-0295-3
Download PDF
Abstract
Random network single-walled carbon nanotube (SWNT)-based thin film transistors show excellent properties in sensors, electronic circuits, and flexible devices. However, they exhibit a significant amount of hysteresis behavior, which should be solved prior to use in industrial applications. This paper provides optimum conditions for the growth of random network SWNTs and reveals that the observed hysteresis behavior originates from the charge exchange between the SWNTs and the dielectric layer rather than from changes in the intrinsic properties of the SWNTs. This was proven by studying the conditions of stepwise gate sweep experiments and time measurements. This paper also shows that top gate SWNT thin film transistors (TFTs) with an SU-8 dielectric layer could provide a practical solution to the hysteresis problem for SWNT TFTs in electronic circuit applications.
References
Sinha N, Ma J, Yeow JTW, J. Nanosci. Nanotechnol., 6, 573 (2006)
Robinson JA, Snow ES, Bdescu SC, Reinecke TL, Perkins FK, Nano Lett., 6, 1747 (2006)
Tersoff J, Freitag M, Tsang JC, Avouris P, Appl. Phys. Lett., 86, 263108 (2005)
Nakazawa M, Nakahara S, Hirooka T, Yoshida M, Kaino T, Komatsu K, Opt. Lett., 31, 915 (2006)
Zhou Y, Gaur A, Hur S, Kocabas C, Meitl MA, Shim M, Rogers JA, Nano Lett., 4, 2031 (2004)
Cao Q, Hur SH, Zhu ZT, Sun Y, Wang CJ, Meitl MA, Shim M, Rogers JA, Adv. Mater., 18(3), 304 (2006)
Han X, Janzen DC, Vaillancourt J, Micro XL, Nano Lett., 2, 96 (2007)
Kim U, Lee E, Kim J, Min Y, Kim E, Park W, Nanotechnology, 20, 295201 (2009)
Kocabas C, Hur S, Gaur A, Meitl MA, Shim M, Rogers JA, Small, 1, 1017 (2005)
Wang C, Ryu K, Badmaev A, Patil N, Lin A, Mitra S, Wong H, Zhou C, Appl. Phys. Lett., 93, 033101 (2008)
Hur S, Kocabas C, Gaur A, Park OO, Shim M, Rogers JA, J. Appl. Phys., 98, 114302 (2005)
Kim W, Javey A, Vermesh O, Wang Q, Li Y, Dai H, Nano Lett., 3, 193 (2003)
Cui JB, Sorden R, Burghard M, Kern K, Appl. Phys. Lett., 81, 3260 (2002)
Rinki M, Zavodchikova MY, Torma P, Johansson A, Phys. Stat. Sol. (b), 245, 2315 (2008)
Hur SH, Yoon MH, Gaur A, Shim M, Facchetti A, Marks TJ, Rogers JA, J. Am. Chem. Soc., 127(40), 13808 (2005)
Yang M, Teo K, Gangloff L, Milne W, Hasko D, Robert Y, Legagneux P, Appl. Phys. Lett., 88, 113507 (2006)
McGill S, Rao S, Manandhar P, Xiong P, Hong S, Appl. Phys. Lett., 89, 163123 (2006)
Kim W, Choi HC, Shim M, Li Y, Wang D, Dai H, Nano Lett., 2, 703 (2002)
Lu CG, Liu J, J. Phys. Chem. B, 110(41), 20254 (2006)
Okita A, Suda Y, Oda A, Nakamura J, Ozeki A, Bhattacharyya K, Sugawara H, Sakai Y, Carbon, 45, 1518 (2007)
Trans SJ, Verschueren ARM, Dekker C, Nature, 393, 49 (1999)
Fazle Kibria AKM, Mo YH, Yun MH, Kim MJ, Nahm KS, Korean J. Chem. Eng., 18(2), 208 (2001)
Sze SM, Semiconductor devices: Physics and technology, John Wiley & Sons, New York (2001)
Kar S, Vijayaraghavan A, Soldano C, Talapatra S, Vajtai R, Nalamasu O, Ajayan P, Appl. Phys. Lett., 89, 132118 (2006)
Schumacher J, Grodrian A, Kremin C, Hoffmann M, Metze J, J. Micromech. Microeng., 18, 055019 (2008)
Robinson JA, Snow ES, Bdescu SC, Reinecke TL, Perkins FK, Nano Lett., 6, 1747 (2006)
Tersoff J, Freitag M, Tsang JC, Avouris P, Appl. Phys. Lett., 86, 263108 (2005)
Nakazawa M, Nakahara S, Hirooka T, Yoshida M, Kaino T, Komatsu K, Opt. Lett., 31, 915 (2006)
Zhou Y, Gaur A, Hur S, Kocabas C, Meitl MA, Shim M, Rogers JA, Nano Lett., 4, 2031 (2004)
Cao Q, Hur SH, Zhu ZT, Sun Y, Wang CJ, Meitl MA, Shim M, Rogers JA, Adv. Mater., 18(3), 304 (2006)
Han X, Janzen DC, Vaillancourt J, Micro XL, Nano Lett., 2, 96 (2007)
Kim U, Lee E, Kim J, Min Y, Kim E, Park W, Nanotechnology, 20, 295201 (2009)
Kocabas C, Hur S, Gaur A, Meitl MA, Shim M, Rogers JA, Small, 1, 1017 (2005)
Wang C, Ryu K, Badmaev A, Patil N, Lin A, Mitra S, Wong H, Zhou C, Appl. Phys. Lett., 93, 033101 (2008)
Hur S, Kocabas C, Gaur A, Park OO, Shim M, Rogers JA, J. Appl. Phys., 98, 114302 (2005)
Kim W, Javey A, Vermesh O, Wang Q, Li Y, Dai H, Nano Lett., 3, 193 (2003)
Cui JB, Sorden R, Burghard M, Kern K, Appl. Phys. Lett., 81, 3260 (2002)
Rinki M, Zavodchikova MY, Torma P, Johansson A, Phys. Stat. Sol. (b), 245, 2315 (2008)
Hur SH, Yoon MH, Gaur A, Shim M, Facchetti A, Marks TJ, Rogers JA, J. Am. Chem. Soc., 127(40), 13808 (2005)
Yang M, Teo K, Gangloff L, Milne W, Hasko D, Robert Y, Legagneux P, Appl. Phys. Lett., 88, 113507 (2006)
McGill S, Rao S, Manandhar P, Xiong P, Hong S, Appl. Phys. Lett., 89, 163123 (2006)
Kim W, Choi HC, Shim M, Li Y, Wang D, Dai H, Nano Lett., 2, 703 (2002)
Lu CG, Liu J, J. Phys. Chem. B, 110(41), 20254 (2006)
Okita A, Suda Y, Oda A, Nakamura J, Ozeki A, Bhattacharyya K, Sugawara H, Sakai Y, Carbon, 45, 1518 (2007)
Trans SJ, Verschueren ARM, Dekker C, Nature, 393, 49 (1999)
Fazle Kibria AKM, Mo YH, Yun MH, Kim MJ, Nahm KS, Korean J. Chem. Eng., 18(2), 208 (2001)
Sze SM, Semiconductor devices: Physics and technology, John Wiley & Sons, New York (2001)
Kar S, Vijayaraghavan A, Soldano C, Talapatra S, Vajtai R, Nalamasu O, Ajayan P, Appl. Phys. Lett., 89, 132118 (2006)
Schumacher J, Grodrian A, Kremin C, Hoffmann M, Metze J, J. Micromech. Microeng., 18, 055019 (2008)