Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 1, 2011
Accepted August 16, 2011
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Coal fouling characteristic to deposit probe with different temperatures under the gasification condition
Division of Energy Systems Research, Graduate School, Ajou University, Wonchon-dong, Yeongtong-gu, Suwon 443-749, Korea 1Plant Engineering Center, IAE, Wonchon-dong, Yeongtong-gu, Suwon 443-749, Korea
htkim@ajou.ac.kr
Korean Journal of Chemical Engineering, April 2012, 29(4), 464-472(9), 10.1007/s11814-011-0214-2
Download PDF
Abstract
Coal gasification was carried out to verify the coal fouling characteristic in a drop tube furnace (DTF). Four pulverized coal samples, in the range of bituminous and sub-bituminous, were used. To analyze the fouling characteristic by different temperature of deposit probe, a two-stage deposit probe was used in the experiment. Ash deposition rate was at upper deposit probe higher than at lower one. The X-ray fluorescence (XRF) results indicated that coal fouling included acid minerals such as SiO2 and Al2O3 at upper deposit probe more than that at lower deposit probe. The results of X-ray diffraction (XRD) and scanning electron microscopy (SEM) indicated that the fouling particles at high deposit temperature were agglomerated more than those at low deposit temperature. And the convective heat transfer efficiency was reduced by ash deposition on probe. Especially, the convective heat transfer coefficient substantially declined with small particle size of fouling and Fe2O3, CaO, and MgO.
References
Shim HM, Lee SJ, Yoo YD, Yun YS, Kim HT, Korean J. Chem. Eng., 26(3), 641 (2009)
Yun Y, Yoo YD, Korean J. Chem. Eng., 18(5), 679 (2001)
Shim HM, Jung SY, Wang HY, Kim HT, Korean J. Chem. Eng., 26(2), 324 (2009)
Van Beek MC, Rindt CCM, Wijers JG, Van Steenhoven AA, Heat Transf. Eng., 22(1), 22 (2001)
Bryers RW, Prog. Energy Combust. Sci., 22(1), 29 (1996)
Gupta RP, Wall TF, Baxter LL, The thermal conductivity of coal ash deposits relationships for particulate and slag structures, in: Gupta RP, Wall TF, Baxter LL (Eds.), pp. 65-84, The Impact of Mineral Impurities in Solid Fuel Combustion, Kluwer Academic Press, New York (1999)
Wu JH, Fang YT, Peng H, Wang Y, Fuel Process. Technol., 86(3), 261 (2004)
Querol X, Juan R, Lopez-Soler A, Fernandez-Turiel JL, Ruiz CR, Fuel., 75, 821 (1996)
Vassilev SV, Vassileva CG, Karayigit AI, Bulut Y, Alastuey A, Querol X, Int. J. Coal Geol., 61, 65 (2005)
Moreno N, Querol X, Andres JM, Stanton K, Towler M, Nugteren H, Fuel., 84, 1351 (2005)
Wigley F, Williamson J, Prog. Energy Combust. Sci., 24(4), 337 (1998)
Vuthaluru HB, Vleeskens JM, Wall TF, Fuel Process. Technol., 55(2), 161 (1998)
Couch GR, Understanding slagging and fouling in of combustion, London: IEA Coal Research (1994)
Skea AF, Bott TR, Beltagui SA, Appl. Therm. Eng., 22, 1835 (2002)
Geankoplis CJ, Transport processes and unit operation, 3rd Ed., pp. 275-276, Prentice Hall International, Singapore (1995)
Kalisz S, Pronobis M, Fuel., 84, 927 (2005)
Pronobis M, Fuel., 85, 474 (2006)
Xu LH, Namkung H, Kwonc HB, Kim HT, J. Ind. Eng. Chem., 15(1), 98 (2009)
Stanton KT, Towler MR, Mooney P, Hill RG, Querol X, J. Chem. Technol. Biotechnol., 77(3), 246 (2002)
Wu XJ, Zhang ZX, Piao GL, He X, Chen YS, Kobayashi N, Mori S, Itaya Y, Energy Fuels, 23, 2420 (2009)
Font O, Querol X, Plana F, Coca O, Burgos S, Pena FG, Fuel., 85, 2229 (2006)
Fernandez Llorente MJ, Murillo Laplaza JM, Escalada Cuadrado R, Carrasco Garcia JE, Fuel., 85, 1157 (2006)
Huang LY, Norman JS, Pourkashanian M, Williams A, Fuel., 75, 271 (1996)
Yun Y, Yoo YD, Korean J. Chem. Eng., 18(5), 679 (2001)
Shim HM, Jung SY, Wang HY, Kim HT, Korean J. Chem. Eng., 26(2), 324 (2009)
Van Beek MC, Rindt CCM, Wijers JG, Van Steenhoven AA, Heat Transf. Eng., 22(1), 22 (2001)
Bryers RW, Prog. Energy Combust. Sci., 22(1), 29 (1996)
Gupta RP, Wall TF, Baxter LL, The thermal conductivity of coal ash deposits relationships for particulate and slag structures, in: Gupta RP, Wall TF, Baxter LL (Eds.), pp. 65-84, The Impact of Mineral Impurities in Solid Fuel Combustion, Kluwer Academic Press, New York (1999)
Wu JH, Fang YT, Peng H, Wang Y, Fuel Process. Technol., 86(3), 261 (2004)
Querol X, Juan R, Lopez-Soler A, Fernandez-Turiel JL, Ruiz CR, Fuel., 75, 821 (1996)
Vassilev SV, Vassileva CG, Karayigit AI, Bulut Y, Alastuey A, Querol X, Int. J. Coal Geol., 61, 65 (2005)
Moreno N, Querol X, Andres JM, Stanton K, Towler M, Nugteren H, Fuel., 84, 1351 (2005)
Wigley F, Williamson J, Prog. Energy Combust. Sci., 24(4), 337 (1998)
Vuthaluru HB, Vleeskens JM, Wall TF, Fuel Process. Technol., 55(2), 161 (1998)
Couch GR, Understanding slagging and fouling in of combustion, London: IEA Coal Research (1994)
Skea AF, Bott TR, Beltagui SA, Appl. Therm. Eng., 22, 1835 (2002)
Geankoplis CJ, Transport processes and unit operation, 3rd Ed., pp. 275-276, Prentice Hall International, Singapore (1995)
Kalisz S, Pronobis M, Fuel., 84, 927 (2005)
Pronobis M, Fuel., 85, 474 (2006)
Xu LH, Namkung H, Kwonc HB, Kim HT, J. Ind. Eng. Chem., 15(1), 98 (2009)
Stanton KT, Towler MR, Mooney P, Hill RG, Querol X, J. Chem. Technol. Biotechnol., 77(3), 246 (2002)
Wu XJ, Zhang ZX, Piao GL, He X, Chen YS, Kobayashi N, Mori S, Itaya Y, Energy Fuels, 23, 2420 (2009)
Font O, Querol X, Plana F, Coca O, Burgos S, Pena FG, Fuel., 85, 2229 (2006)
Fernandez Llorente MJ, Murillo Laplaza JM, Escalada Cuadrado R, Carrasco Garcia JE, Fuel., 85, 1157 (2006)
Huang LY, Norman JS, Pourkashanian M, Williams A, Fuel., 75, 271 (1996)