Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 24, 2013
Accepted August 5, 2013
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Determination of cost-effective operating condition for CO2 capturing using 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid
Emad Ali†
Inas Alnashef
Abdelhamid Ajbar
Sarwono Mulyono
Hanee Farzana Hizaddin1
Mohamed Kamel Hadj-Kali
Chemical Engineering Department, King Saud University, P. O. Box 800, Riyadh 11421, Saudi Arabia 1Department of Chemical Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
amkamal@ksu.edu.sa
Korean Journal of Chemical Engineering, November 2013, 30(11), 2068-2077(10), 10.1007/s11814-013-0148-y
Download PDF
Abstract
1-Butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) ionic liquid (IL) is considered for CO2 capturing in a typical absorption/stripper process. The use of ionic liquids is considered to be cost-effective because it requires less energy for solvent recovery compared to other conventional processes. A mathematical model was developed for the process based on Peng-Robinson (PR) equation of state (EoS). The model was validated with experimental data for CO2 solubility in [BMIM][BF4]. The model is utilized to study the sorbent effect and energy demand_x000D_
for selected operating pressure at specific CO2 capturing rates. The energy demand is expressed by the vapor-liquid equilibrium temperature necessary to remove the captured CO2 from the spent solvent in the regeneration step. It is found that low recovery temperature can be achieved at specific pressure combination for the absorber/stripper units. In fact, the temperature requirement is less than that required by the typical monoethanolamine (MEA) solvent. The effect of the CO2 loading in the sorbent stream on the process performance is also examined.
References
Yamasaki A, J. Chem. Eng. Jpn., 36(4), 361 (2003)
Cohen SM, Chalmers HL, Webber ME, King CW, Environ.Res. Lett., 6, 1 (2011)
Tarun CB, Croiset E, Douglas PL, Gupta M, Chowdhury MHM, Int. J. Greenhouse Gas Control., 1, 55 (2007)
Dave N, Do T, Puxty G, Rowland R, Feron PHM, Attalla MI, Energy Procedia., 1, 949 (2009)
Rodriguez N, Mussati S, Scenna N, Chem. Eng. Res. Des., 89(9A), 1763 (2011)
Mofarahi M, Khojasteh Y, Khaledi H, Farahnak A, Energy, 33(8), 1311 (2008)
Abu-Zahra M, Schneides LH, Niederer JP, Feron H, Versteeg GF, Int. J. Greenhouse Gas Control., 1, 37 (2007)
Kvamsdal HM, Rochelle GT, Ind. Eng. Chem. Res., 47(3), 867 (2008)
Rao AB, Rubin ES, Keith DW, Morgan MG, Energy Policy, 34(18), 3765 (2006)
Blanchard LA, Hancu D, Beckman EJ, Brennecke JF, Nature, 399(6731), 28 (1999)
Huang J, Ruther T, Aust. J. Chem., 62, 298 (2006)
Zhang X, Dong H, Zhao Z, Zhang S, Huang Y, Energy Environ.Sci., 5, 6668 (2012)
Aki SNVK, Mellein BR, Saurer EM, Brennecke JF, J. Phys. Chem. B, 108(52), 20355 (2004)
Kazarian SG, Briscoe BJ, Welton T, Chem. Commun., 20, 2047 (2000)
Jacquemin J, Gomes MFC, Husson P, Majer V, J. Chem. Thermodyn., 38(4), 490 (2006)
Peng DY, Robinson DB, Ind. Eng. Chem. Fundam., 15(1), 59 (1876)
Harvey AH, Application of molecular modeling to vapor-liquid equilibrium of water with synthesis gas, 15th Inter Conference on the Properties of Water and Steam, Berlin, Sep. 8-11 (2008)
Tombokan XC, Ternary phase equilibrium of the sclareol-ethyl lactate-CO2 system and its application in the extraction and isolation of sclareol from clary sage, PhD Dissertation 2008, North Carolina State University, USA.
Greer T, Modeling and simulation of post combustion CO2 capturing, MSc Thesis 2008, Telemark University College, Norway
Lars EO, Aspen HYSYS simulation of CO2 removal by amine absorption from a gas based power plant, The 48th Scandinavian Conference on Simulation and Modeling, Gøteborg, Oct. 30-31 (2007)
Shiflett MB, Yokozeki A, Ind. Eng. Chem. Res., 44(12), 4453 (2005)
Maia FM, Tsivintzelis I, Rodriguez O, Macedo EA, Kontogeorgis GM, Fluid Phase Equilib., 332, 128 (2012)
Vega LF, Vilaseca O, Llovell F, Andreu JS, Fluid Phase Equilib., 294(1-2), 15 (2010)
Alvarez VH, Aznar M, J. Chin. Inst. Chem. Eng., 39(4), 353 (2008)
Carvalho PJ, Alvarez VH, Machado JJB, Pauly J, Daridon JL, Marrucho IM, Aznar M, Coutinho JAP, J. Supercrit. Fluids, 48(2), 99 (2009)
Carvalho PJ, Alvarez VH, Marrucho IM, Aznar M, Coutinho JAP, J. Supercrit. Fluids, 50(2), 105 (2009)
Valderrama JO, Reategui A, Sanga WW, Ind. Eng. Chem. Res., 47(21), 8416 (2008)
Mattedi S, Carvalho PJ, Coutinho JAP, Alvarez VH, Iglesias M, J. Supercrit. Fluids, 56(3), 224 (2011)
Valderrama JO, Urbina F, Faundez CA, J. Supercrit. Fluids., 64, 32 (2012)
Arce PF, Robles PA, Graber TA, Aznar M, Fluid Phase Equilib., 295(1), 9 (2010)
Ren W, Sensenich B, Scurto AM, J. Chem. Thermodyn., 42(3), 305 (2010)
Yim JH, Song HN, Lee BC, Lim JS, Fluid Phase Equilib., 308(1-2), 147 (2011)
Hwang S, Park Y, Park K, J. Chem. Thermodyn., 43(3), 339 (2011)
Shariati A, Peters CJ, J. Supercrit. Fluids, 25(2), 109 (2003)
Shin EK, Lee BC, Lim JS, J. Supercrit. Fluids, 45(3), 282 (2008)
Song HN, Lee BC, Lim JS, J. Chem. Eng. Data, 55(2), 891 (2010)
Fang S, Cho DW, Im T, Kim H, Fluid Phase Equilib., 299(2), 216 (2010)
Ren W, Scurto AM, Fluid Phase Equilib., 286(1), 1 (2009)
Nwosu SO, Schleicher JC, Scurto AM, J. Supercrit. Fluids, 51(1), 1 (2009)
Revelli AL, Mutelet F, Jaubert JN, J. Phys. Chem. B, 114(24), 8199 (2010)
Revelli AL, Mutelet F, Jaubert JN, J. Phys. Chem. B, 114(40), 12908 (2010)
Bogel-Lukasik R, Matkowska D, Bogel-Lukasik E, Hofman T, Fluid Phase Equilib., 293(2), 168 (2010)
Sandler SL, Chemical and engineering thermodynamics, 3rd Ed. Wiley (1999)
Nasri Z, Binous H, Chem. Eng. Education., 43(2), 1 (2009)
Valderrama JO, Forero LA, Rojas RE, Ind. Eng. Chem. Res., 51(22), 7838 (2012)
Greer T, Bedelbayev A, Igreja J, Gomrz J, Lie B, A dynamic model for the de-absorption of carbon dioxide from monoethanolamine solution, The 49th Scandinavian Conference on Simulation and Modeling (SIMS2008), Oslo University, Oct. 7-8 (2008)
Cohen SM, Chalmers HL, Webber ME, King CW, Environ.Res. Lett., 6, 1 (2011)
Tarun CB, Croiset E, Douglas PL, Gupta M, Chowdhury MHM, Int. J. Greenhouse Gas Control., 1, 55 (2007)
Dave N, Do T, Puxty G, Rowland R, Feron PHM, Attalla MI, Energy Procedia., 1, 949 (2009)
Rodriguez N, Mussati S, Scenna N, Chem. Eng. Res. Des., 89(9A), 1763 (2011)
Mofarahi M, Khojasteh Y, Khaledi H, Farahnak A, Energy, 33(8), 1311 (2008)
Abu-Zahra M, Schneides LH, Niederer JP, Feron H, Versteeg GF, Int. J. Greenhouse Gas Control., 1, 37 (2007)
Kvamsdal HM, Rochelle GT, Ind. Eng. Chem. Res., 47(3), 867 (2008)
Rao AB, Rubin ES, Keith DW, Morgan MG, Energy Policy, 34(18), 3765 (2006)
Blanchard LA, Hancu D, Beckman EJ, Brennecke JF, Nature, 399(6731), 28 (1999)
Huang J, Ruther T, Aust. J. Chem., 62, 298 (2006)
Zhang X, Dong H, Zhao Z, Zhang S, Huang Y, Energy Environ.Sci., 5, 6668 (2012)
Aki SNVK, Mellein BR, Saurer EM, Brennecke JF, J. Phys. Chem. B, 108(52), 20355 (2004)
Kazarian SG, Briscoe BJ, Welton T, Chem. Commun., 20, 2047 (2000)
Jacquemin J, Gomes MFC, Husson P, Majer V, J. Chem. Thermodyn., 38(4), 490 (2006)
Peng DY, Robinson DB, Ind. Eng. Chem. Fundam., 15(1), 59 (1876)
Harvey AH, Application of molecular modeling to vapor-liquid equilibrium of water with synthesis gas, 15th Inter Conference on the Properties of Water and Steam, Berlin, Sep. 8-11 (2008)
Tombokan XC, Ternary phase equilibrium of the sclareol-ethyl lactate-CO2 system and its application in the extraction and isolation of sclareol from clary sage, PhD Dissertation 2008, North Carolina State University, USA.
Greer T, Modeling and simulation of post combustion CO2 capturing, MSc Thesis 2008, Telemark University College, Norway
Lars EO, Aspen HYSYS simulation of CO2 removal by amine absorption from a gas based power plant, The 48th Scandinavian Conference on Simulation and Modeling, Gøteborg, Oct. 30-31 (2007)
Shiflett MB, Yokozeki A, Ind. Eng. Chem. Res., 44(12), 4453 (2005)
Maia FM, Tsivintzelis I, Rodriguez O, Macedo EA, Kontogeorgis GM, Fluid Phase Equilib., 332, 128 (2012)
Vega LF, Vilaseca O, Llovell F, Andreu JS, Fluid Phase Equilib., 294(1-2), 15 (2010)
Alvarez VH, Aznar M, J. Chin. Inst. Chem. Eng., 39(4), 353 (2008)
Carvalho PJ, Alvarez VH, Machado JJB, Pauly J, Daridon JL, Marrucho IM, Aznar M, Coutinho JAP, J. Supercrit. Fluids, 48(2), 99 (2009)
Carvalho PJ, Alvarez VH, Marrucho IM, Aznar M, Coutinho JAP, J. Supercrit. Fluids, 50(2), 105 (2009)
Valderrama JO, Reategui A, Sanga WW, Ind. Eng. Chem. Res., 47(21), 8416 (2008)
Mattedi S, Carvalho PJ, Coutinho JAP, Alvarez VH, Iglesias M, J. Supercrit. Fluids, 56(3), 224 (2011)
Valderrama JO, Urbina F, Faundez CA, J. Supercrit. Fluids., 64, 32 (2012)
Arce PF, Robles PA, Graber TA, Aznar M, Fluid Phase Equilib., 295(1), 9 (2010)
Ren W, Sensenich B, Scurto AM, J. Chem. Thermodyn., 42(3), 305 (2010)
Yim JH, Song HN, Lee BC, Lim JS, Fluid Phase Equilib., 308(1-2), 147 (2011)
Hwang S, Park Y, Park K, J. Chem. Thermodyn., 43(3), 339 (2011)
Shariati A, Peters CJ, J. Supercrit. Fluids, 25(2), 109 (2003)
Shin EK, Lee BC, Lim JS, J. Supercrit. Fluids, 45(3), 282 (2008)
Song HN, Lee BC, Lim JS, J. Chem. Eng. Data, 55(2), 891 (2010)
Fang S, Cho DW, Im T, Kim H, Fluid Phase Equilib., 299(2), 216 (2010)
Ren W, Scurto AM, Fluid Phase Equilib., 286(1), 1 (2009)
Nwosu SO, Schleicher JC, Scurto AM, J. Supercrit. Fluids, 51(1), 1 (2009)
Revelli AL, Mutelet F, Jaubert JN, J. Phys. Chem. B, 114(24), 8199 (2010)
Revelli AL, Mutelet F, Jaubert JN, J. Phys. Chem. B, 114(40), 12908 (2010)
Bogel-Lukasik R, Matkowska D, Bogel-Lukasik E, Hofman T, Fluid Phase Equilib., 293(2), 168 (2010)
Sandler SL, Chemical and engineering thermodynamics, 3rd Ed. Wiley (1999)
Nasri Z, Binous H, Chem. Eng. Education., 43(2), 1 (2009)
Valderrama JO, Forero LA, Rojas RE, Ind. Eng. Chem. Res., 51(22), 7838 (2012)
Greer T, Bedelbayev A, Igreja J, Gomrz J, Lie B, A dynamic model for the de-absorption of carbon dioxide from monoethanolamine solution, The 49th Scandinavian Conference on Simulation and Modeling (SIMS2008), Oslo University, Oct. 7-8 (2008)