ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 13, 2014
Accepted November 4, 2014
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Characterization of supported Ni catalysts for aqueous-phase reforming of glycerol

Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Korea 1Department of Advanced Chemical Engineering, Chonnam National University, Gwangju 500-757, Korea 2Faculty of Applied Chemical Engineering and the Research Institute for Catalysis, Chonnam National University, Gwangju 500-757, Korea
Korean Journal of Chemical Engineering, July 2015, 32(7), 1267-1272(6), 10.1007/s11814-014-0325-7
downloadDownload PDF

Abstract

The aqueous phase reforming (APR) over supported nickel-based catalysts was investigated as a feasibility study for hydrogen production from glycerol, byproduct of biodiesel produced by trans-esterification of triglycerides. Four different Ni-supported catalysts (Ni/LaAlO3, Ni/CeO2, Ni/MgO, and Ni/MgAl) were examined for the glycerol reforming in terms of the catalytic activities and the level of resistance. The APR of glycerol over Ni-supported catalysts showed that the conversion of glycerol to gas and H2 selectivity were strongly dependent on the support and amount of Ni loading. A perovskite type catalyst, Ni/LaAlO3, showed the highest reforming performance and good stability. A perovskite-type catalyst showed the glycerol conversion to 36% and the maximum value of H2 and CO2 selectivity to 96% and 81%. And the reforming gas composition in gas phase was measured to H2 61%, CO2 32%, CH4 6%, and CO 1% in the APR over Ni/LaAlO3. Comparison results of the reported results showed that Ni supported catalysts in the present study showed good performance for the APR to produce hydrogen from renewable resources.

References

Cortright RD, Davda RR, Dumesic JA, Nature, 418, 964 (2002)
Kim S, Kang M, J. Ind. Eng. Chem., 18(3), 969 (2012)
Slinn M, Kendall K, Mallon C, Andrews J, Bioresour. Technol., 99(13), 5851 (2008)
Huang ZY, Xu CH, Liu CQ, Xiao HW, Chen J, Zhang YX, Lei YC, Korean J. Chem. Eng., 30(3), 587 (2013)
Pant KK, Jain R, Jain S, Korean J. Chem. Eng., 28(9), 1859 (2011)
Luo N, Fu X, Cao F, Xiao T, Edwards PP, Fuel, 87, 3483 (2008)
Adhikari S, Fernando SD, Haryanto A, Energy Conv. Manag., 50(10), 2600 (2009)
Seong M, Shin M, Cho JH, Lee YC, Park YK, Jeon JK, Korean J. Chem. Eng., 31(3), 412 (2014)
Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA, Appl. Catal. A: Gen., 43, 13 (2003)
Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA, Appl. Catal. B: Environ., 56(1-2), 171 (2005)
Menezes AO, Rodrigues MT, Zimmaro A, Borges LEP, Fraga MA, Renew. Energy, 36(2), 595 (2011)
Tuza PV, Manfro RL, Ribeiro NFP, Souza MMVM, Renew. Energy, 50, 408 (2013)
Iriondo A, Cambra JF, Barrio VL, Guemez MB, Arias PL, Sanchez-Sanchez MC, Navarro RM, Fierro JLG, Appl. Catal. B: Environ., 106(1-2), 83 (2011)
Merino NA, Barbero BP, Grange P, Cadus LE, J. Catal., 231(1), 232 (2005)
Lim SS, Lee HJ, Moon DJ, Kim JH, Park NC, Shin JS, Kim YC, Chem. Eng. J., 152(1), 220 (2009)
Barison S, Battagliarin M, Daolio S, Fabrizio M, Miorin E, Antonucci PL, Candamano S, Modafferi V, Bauer EM, Bellitto C, Righini G, Solid State Ion., 177(39-40), 3473 (2007)
Dou BL, Dupont V, Rickett G, Blakeman N, Williams PT, Chen HS, Ding YL, Ghadiri M, Bioresour. Technol., 100(14), 3540 (2009)
Shabaker JW, Huber GW, Davda RR, Cortright RD, Dumesic JA, Catal. Lett., 88(1-2), 1 (2003)
Manfro RL, da Costa AF, Ribeiro NFP, Souza MMVM, Fuel Process. Technol., 92(3), 330 (2011)
Zhang BC, Tang XL, Li Y, Xu YD, Shen WJ, Int. J. Hydrog. Energy, 32(13), 2367 (2007)
Roy B, Sullivan H, Leclerc CA, J. Power Sources, 196(24), 10652 (2011)
Lee HJ, Lim YS, Park NC, Kim YC, Chem. Eng. J., 146(2), 295 (2009)
Natesakhawat S, Watson RB, Wang XQ, Ozkan US, J. Catal., 234(2), 496 (2005)
Iriondo A, Barrio VL, Cambra JF, Arias PL, Guemez MB, Navarro RM, Sanchez-Sanchez MC, Fierro JLG, Top. Catal., 49, 46 (2008)
Navarro RM, Alvarez-Galvan MC, Villoria JA, Gonzalez-Jimenez ID, Rosa F, Fierro JLG, Appl. Catal. B: Environ., 73(3-4), 247 (2007)
Urasaki K, Sekine Y, Kawabe S, Kikuchi E, Matsukata M, Appl. Catal. A: Gen., 286(1), 23 (2005)
Adhikari S, Fernando SD, Haryanto A, Renew. Energy, 33(5), 1097 (2008)
Frusteri F, Freni S, Chiodo V, Donato S, Bonura G, Cavallaro S, Int. J. Hydrog. Energy, 31(15), 2193 (2006)
Tabata K, Hirano Y, Suzuki E, Appl. Catal. A: Gen., 170(2), 245 (1998)
Pereniguez R, Gonzalez-DelaCruz VM, Holgado JP, Caballero A, Appl. Catal. B: Environ., 93(3-4), 346 (2010)
Lehnert K, Claus P, Catal. Commun., 9, 2543 (2008)
Guo Y, Azmat MU, Liu XH, Wang YQ, Lu GZ, Appl. Energy, 92, 218 (2012)
King DL, Zhang LA, Xia G, Karim AM, Heldebrant DJ, Wang XQ, Peterson T, Wang Y, Appl. Catal. B: Environ., 99(1-2), 206 (2010)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로