Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 21, 2016
Accepted July 2, 2016
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Gas permeation and separation in asymmetric hollow fiber membrane permeators:Mathematical modeling, sensitivity analysis and optimization
Department of Chemical Engineering, Tarbiat Modares University, Tehran 14115-114, Iran 1OLI Systems, Inc, 240 Cedar Knolls Road, Suite 301 Cedar Knolls, NJ 07927-1621, U.S.A., USA
Korean Journal of Chemical Engineering, November 2016, 33(11), 3085-3101(17), 10.1007/s11814-016-0198-z
Download PDF
Abstract
Mathematical modeling is useful for analysis of process design and performance and is widely used for membrane separation and other important technologies in the energy sector. This study presents the results of our investigations on the mathematical modeling and optimization of hollow fiber membrane permeators specifically used for air separation as well as natural gas purification. The governing equations and mathematical models are developed based on the consideration of ideal and non-ideal conditions often involved in the separation of gas mixtures using membrane permeators. The influence and consequences of adoption of two distinct numerical methods for solving governing equations are investigated in details. The results obtained by using the models as well as the effect of numerical method type are examined and compared to the experimental data. The findings highlight the important role of the solution method on the validity and accuracy of the models. Moreover, the effect of variations in the operating conditions and physical geometries of the membrane are investigated through comprehensive sensitivity analysis. Accordingly, a set of optimal input parameters is determined using an appropriate statistical method. The findings provide useful information for the design and development of high performance membrane permeators and processes particularly in the case of binary gas mixtures for energy applications.
Keywords
References
Hosseini SS, Chung TS, J. Membr. Sci., 328(1-2), 174 (2009)
Shahmirzadi MAA, Hosseini SS, Ruan G, Tan NR, RSC Adv., 5, 49080 (2015)
Hosseini SS, Li Y, Chung TS, Liu Y, J. Membr. Sci., 302(1-2), 207 (2007)
Kwon H, Lu M, Lee J, Korean J. Chem. Eng., 31(6), 949 (2014)
Hosseini SS, Omidkhah MR, Moghaddam AZ, Pirouzfar V, Krantz WB, Tan NR, Sep. Purif. Technol., 122, 278 (2014)
Najari S, Hosseini SS, Omidkhah M, Tan NR, RSC Adv., 5, 47199 (2015)
Hosseini SS, Chung TS, Polymer blends and carbonized polymer blends, in, Google Patents (2014).
Park JK, Seo JI, Korean J. Chem. Eng., 19(6), 940 (2002)
Hosseini SS, Teoh MM, Chung TS, Polymer, 49(6), 1594 (2008)
Teerachaiyapat T, Ramakul P, Korean J. Chem. Eng., 33(1), 8 (2016)
Weller S, Steiner WA, J. Appl. Phys., 21, 279 (1950)
Hosseini SS, Peng N, Chung TS, J. Membr. Sci., 349(1-2), 156 (2010)
Nguyen QT, Gref R, Clement R, Lenda H, Colloid Polym. Sci., 271, 1134 (1993)
Fattah KA, Hamam SM, Al-Enezi G, Ettoueny HM, Hughes R, J. Membr. Sci., 65, 247 (1992)
Kundu PK, Chakma A, Feng XS, Can. J. Chem. Eng., 90(5), 1253 (2012)
Wang R, Liu SL, Lin TT, Chung TS, Chem. Eng. Sci., 57(6), 967 (2002)
Giglia S, Bikson B, Perrin JE, Donatelli AA, Ind. Eng. Chem. Res., 30, 1239 (1991)
Gornshteyn BJ, Can. J. Chem. Eng., 81(1), 139 (2003)
Ismail AF, Haron S, Development of a simulation model for a hollow fiber membrane N2-H2 separation system, Jurnal Teknologi, 45 (2000).
Katoh T, Tokumura M, Yoshikawa H, Kawase Y, Sep. Purif. Technol., 76(3), 362 (2011)
Kovvali AS, Vemury S, Admassu W, Ind. Eng. Chem. Res., 33(4), 896 (1994)
Lim SP, Tan XY, Li K, Chem. Eng. Sci., 55(14), 2641 (2000)
Marriott J, Sorensen E, Chem. Eng. Sci., 58(22), 4975 (2003)
Marriott JI, Sorensen E, Bogle IDL, Comput. Chem. Eng., 25(4-6), 693 (2001)
Zhao SY, Li ZQ, Liu Y, Wang LE, Desalination, 233(1-3), 310 (2008)
Kaldis SP, Kapantaidakis GC, Papadopoulos TI, Sakellaropoulos GP, J. Membr. Sci., 142(1), 43 (1998)
Coker DT, Allen T, Freeman BD, Fleming GK, AIChE J., 45(7), 1451 (1999)
Khalilpour R, Abbas A, Lai ZP, Pinnau I, Chem. Eng. Res. Des., 91(2), 332 (2013)
Kundu PK, Chakma A, Feng X, Can. J. Chem. Eng., 91, 1092 (2012)
Makaruk A, Harasek M, J. Membr. Sci., 344(1-2), 258 (2009)
Shamsabadi AA, Kargari A, Farshadpour F, Laki S, J. Membr. Sep. Technol., 1, 19 (2012)
Pan CY, AIChE J., 32, 2020 (1986)
Hosseini SS, Roodashti SM, Kundu PK, Tan NR, Can. J. Chem. Eng., 93(7), 1275 (2015)
Hosseini SS, Najari S, Kundu PK, Tan NR, Roodashti SM, RSC Adv., 5, 86359 (2015)
Ismail AF, Saidi H, Rahman AA, Numerical solution of a mathematical model for hollow-fiber membrane gas separation system, in: Seminar Penyelidikan Fakulti Kej. Kimia & Kej. Sumber Asli, Jawatankuasa PenyelIdikan & Perundingan, Fakulti Kej. Kimia & Kej. Sumber Asli, UTM, 1 (1993).
Pan CY, AIChE J., 29, 545 (1983)
Singh V, Rhinehart RR, Narayan RS, Tock RW, Ind. Eng. Chem. Res., 34(12), 4472 (1995)
Scholz M, Harlacher T, Melin T, Wessling M, Ind. Eng. Chem. Res., 52, 1079 (2012)
Dehkordi JA, Hosseini SS, Kundu PK, Tan NR, Chem. Prod. Process. Model., 11, 11 (2016)
Hosseini SS, Dehkordi JA, Kundu PK, Chem. Prod. Process. Model., 11, 7 (2016)
Prausnitz JM, Lichtenthaler RN, de Azevedo EG, Molecular thermodynamics of fluid-phase equilibria, Pearson Education (1998).
Gorissen H, Chem. Eng. Process., 22, 63 (1987)
Poling BE, Prausnitz JM, O’Connell JP, The Properties of Gases and Liquids, 5th Ed., McGraw-Hill Professional (2001).
Cockburn B, Karniadakis GE, Shu CW, The development of discontinuous Galerkin methods, Springer (2000).
Al-Omari A, Schuttler HB, Arnold J, Taha T, Solving Nonlinear Systems of First Order Ordinary Differential Equations Using a Galerkin Finite Element Method, Access, IEEE, 1, 408 (2013).
Rastegar SO, Mousavi SM, Rezaei M, Shojaosadati SA, J. Ind. Eng. Chem., 20(5), 3096 (2014)
Hassani A, Soltani RDC, Kiransan M, Karaca S, Karaca C, Khataee A, Korean J. Chem. Eng., 33(1), 178 (2016)
Myers RH, Montgomery DC, Anderson-Cook CM, Response surface methodology: process and product optimization using designed experiments, John Wiley & Sons (2009).
Tranchino L, Santarossa R, Carta F, Fabiani C, Bimbi L, Sep. Sci. Technol., 24, 1207 (1989)
Feng XS, Ivory J, Rajan VSV, AIChE J., 45(10), 2142 (1999)
Sanders E, Koros WJ, Hopfenberg H, Stannett V, J. Membr. Sci., 18, 52 (1984)
Chern R, Koros W, Yui B, Hopfenberg H, Stannett V, J. Polym. Sci. B: Polym. Phys., 22, 1061 (1984)
Donohue M, Minhas B, Lee S, J. Membr. Sci., 42, 197 (1989)
Pirouzfar V, Hosseini SS, Omidkhah MR, Moghaddam AZ, Polym. Eng. Sci., 54(1), 147 (2014)
Dantzig G, The nature of mathematical programming, Mathematical Programming Glossary (2010).
Shahmirzadi MAA, Hosseini SS, Ruan G, Tan NR, RSC Adv., 5, 49080 (2015)
Hosseini SS, Li Y, Chung TS, Liu Y, J. Membr. Sci., 302(1-2), 207 (2007)
Kwon H, Lu M, Lee J, Korean J. Chem. Eng., 31(6), 949 (2014)
Hosseini SS, Omidkhah MR, Moghaddam AZ, Pirouzfar V, Krantz WB, Tan NR, Sep. Purif. Technol., 122, 278 (2014)
Najari S, Hosseini SS, Omidkhah M, Tan NR, RSC Adv., 5, 47199 (2015)
Hosseini SS, Chung TS, Polymer blends and carbonized polymer blends, in, Google Patents (2014).
Park JK, Seo JI, Korean J. Chem. Eng., 19(6), 940 (2002)
Hosseini SS, Teoh MM, Chung TS, Polymer, 49(6), 1594 (2008)
Teerachaiyapat T, Ramakul P, Korean J. Chem. Eng., 33(1), 8 (2016)
Weller S, Steiner WA, J. Appl. Phys., 21, 279 (1950)
Hosseini SS, Peng N, Chung TS, J. Membr. Sci., 349(1-2), 156 (2010)
Nguyen QT, Gref R, Clement R, Lenda H, Colloid Polym. Sci., 271, 1134 (1993)
Fattah KA, Hamam SM, Al-Enezi G, Ettoueny HM, Hughes R, J. Membr. Sci., 65, 247 (1992)
Kundu PK, Chakma A, Feng XS, Can. J. Chem. Eng., 90(5), 1253 (2012)
Wang R, Liu SL, Lin TT, Chung TS, Chem. Eng. Sci., 57(6), 967 (2002)
Giglia S, Bikson B, Perrin JE, Donatelli AA, Ind. Eng. Chem. Res., 30, 1239 (1991)
Gornshteyn BJ, Can. J. Chem. Eng., 81(1), 139 (2003)
Ismail AF, Haron S, Development of a simulation model for a hollow fiber membrane N2-H2 separation system, Jurnal Teknologi, 45 (2000).
Katoh T, Tokumura M, Yoshikawa H, Kawase Y, Sep. Purif. Technol., 76(3), 362 (2011)
Kovvali AS, Vemury S, Admassu W, Ind. Eng. Chem. Res., 33(4), 896 (1994)
Lim SP, Tan XY, Li K, Chem. Eng. Sci., 55(14), 2641 (2000)
Marriott J, Sorensen E, Chem. Eng. Sci., 58(22), 4975 (2003)
Marriott JI, Sorensen E, Bogle IDL, Comput. Chem. Eng., 25(4-6), 693 (2001)
Zhao SY, Li ZQ, Liu Y, Wang LE, Desalination, 233(1-3), 310 (2008)
Kaldis SP, Kapantaidakis GC, Papadopoulos TI, Sakellaropoulos GP, J. Membr. Sci., 142(1), 43 (1998)
Coker DT, Allen T, Freeman BD, Fleming GK, AIChE J., 45(7), 1451 (1999)
Khalilpour R, Abbas A, Lai ZP, Pinnau I, Chem. Eng. Res. Des., 91(2), 332 (2013)
Kundu PK, Chakma A, Feng X, Can. J. Chem. Eng., 91, 1092 (2012)
Makaruk A, Harasek M, J. Membr. Sci., 344(1-2), 258 (2009)
Shamsabadi AA, Kargari A, Farshadpour F, Laki S, J. Membr. Sep. Technol., 1, 19 (2012)
Pan CY, AIChE J., 32, 2020 (1986)
Hosseini SS, Roodashti SM, Kundu PK, Tan NR, Can. J. Chem. Eng., 93(7), 1275 (2015)
Hosseini SS, Najari S, Kundu PK, Tan NR, Roodashti SM, RSC Adv., 5, 86359 (2015)
Ismail AF, Saidi H, Rahman AA, Numerical solution of a mathematical model for hollow-fiber membrane gas separation system, in: Seminar Penyelidikan Fakulti Kej. Kimia & Kej. Sumber Asli, Jawatankuasa PenyelIdikan & Perundingan, Fakulti Kej. Kimia & Kej. Sumber Asli, UTM, 1 (1993).
Pan CY, AIChE J., 29, 545 (1983)
Singh V, Rhinehart RR, Narayan RS, Tock RW, Ind. Eng. Chem. Res., 34(12), 4472 (1995)
Scholz M, Harlacher T, Melin T, Wessling M, Ind. Eng. Chem. Res., 52, 1079 (2012)
Dehkordi JA, Hosseini SS, Kundu PK, Tan NR, Chem. Prod. Process. Model., 11, 11 (2016)
Hosseini SS, Dehkordi JA, Kundu PK, Chem. Prod. Process. Model., 11, 7 (2016)
Prausnitz JM, Lichtenthaler RN, de Azevedo EG, Molecular thermodynamics of fluid-phase equilibria, Pearson Education (1998).
Gorissen H, Chem. Eng. Process., 22, 63 (1987)
Poling BE, Prausnitz JM, O’Connell JP, The Properties of Gases and Liquids, 5th Ed., McGraw-Hill Professional (2001).
Cockburn B, Karniadakis GE, Shu CW, The development of discontinuous Galerkin methods, Springer (2000).
Al-Omari A, Schuttler HB, Arnold J, Taha T, Solving Nonlinear Systems of First Order Ordinary Differential Equations Using a Galerkin Finite Element Method, Access, IEEE, 1, 408 (2013).
Rastegar SO, Mousavi SM, Rezaei M, Shojaosadati SA, J. Ind. Eng. Chem., 20(5), 3096 (2014)
Hassani A, Soltani RDC, Kiransan M, Karaca S, Karaca C, Khataee A, Korean J. Chem. Eng., 33(1), 178 (2016)
Myers RH, Montgomery DC, Anderson-Cook CM, Response surface methodology: process and product optimization using designed experiments, John Wiley & Sons (2009).
Tranchino L, Santarossa R, Carta F, Fabiani C, Bimbi L, Sep. Sci. Technol., 24, 1207 (1989)
Feng XS, Ivory J, Rajan VSV, AIChE J., 45(10), 2142 (1999)
Sanders E, Koros WJ, Hopfenberg H, Stannett V, J. Membr. Sci., 18, 52 (1984)
Chern R, Koros W, Yui B, Hopfenberg H, Stannett V, J. Polym. Sci. B: Polym. Phys., 22, 1061 (1984)
Donohue M, Minhas B, Lee S, J. Membr. Sci., 42, 197 (1989)
Pirouzfar V, Hosseini SS, Omidkhah MR, Moghaddam AZ, Polym. Eng. Sci., 54(1), 147 (2014)
Dantzig G, The nature of mathematical programming, Mathematical Programming Glossary (2010).