ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 30, 2016
Accepted February 9, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

The effect of cyano groups on the solubility of carbon dioxide in ionic liquids containing cyano groups in anion

Department of Chemical and Biomolecular Engineering, Sogang University, C. P. O. Box 1142, Seoul 04107, Korea
limjs@sogang.ac.kr
Korean Journal of Chemical Engineering, May 2017, 34(5), 1475-1482(8), 10.1007/s11814-017-0038-9
downloadDownload PDF

Abstract

The solubility of carbon dioxide (CO2) was investigated using three ionic liquids containing different numbers of cyano groups in the anion, 1-hexyl-3-methylimidazolium tricyanomethanide ([c6mim][C(CN)3]), 1-hexyl-3-methylimidazolium dicyanamide ([c6mim][N(CN)2]), and 1-hexyl-3-methylimidazolium thiocyanate ([c6mim][SCN]). The CO2 solubilities were determined by measuring the bubble point pressures of the CO2+ionic liquid mixtures at temperatures ranging from 303.15 to 373.15 K and pressure up to 105MPa. The experimental results showed that the solubilities of CO2 in ionic liquids increased with pressure, decreased with temperature, and increased with the length of the alkyl chains in the cation. Furthermore, a higher CO2 solubility was achieved in the ionic liquid with more cyano groups in the anion. The experimental data were correlated with the Peng-Robinson equation of state (PR-EoS), using the conventional van der Waals one fluid mixing rule and the modified Lydersen-Joback-Reid method. The average absolute deviation values of pressure (AAD-P) were 0.0658 for CO2+[c6mim][SCN], 0.0633 for CO2+[c6mim][N(CN)2], and 0.0761 for CO2+[c6mim][C(CN)3] system.

References

Oh TH, Renew. Sust. Energ. Rev., 14, 2697 (2010)
Herzog HJ, Energy Econ., 33, 597 (2011)
Orr FM, Energy Environ. Sci., 2, 449 (2009)
Zhang X, Zhang X, Dong H, Zhao Z, Zhang S, Huang Y, Energy Environ. Sci., 5, 6668 (2012)
Xue Z, Zhang Z, Han J, Chen Y, Mu T, Int. J. Greenh, Gas Control., 5, 628 (2011)
Lepaumier H, Picq D, Carrette PL, Ind. Eng. Chem. Res., 48(20), 9061 (2009)
Freemantle M, An Introduction to Ionic Liquids, 1st Ed., Royal Society of Chemistry (2010).
KE, Interface Electrochem. Soc., 16, 38 (2007).
Davis JH, Chem. Lett., 33(9), 1072 (2004)
Park P, Lin KYA, Park AHA, Petit C, Front. Energy Res., 3, 42 (2015)
IEA Greenhouse Gas R&D Programme (IEA GHG). Evaluation of post-combustion CO2 capture solvent concepts (2009).
Aroonwilas A, Tontiwachwuthikul P, Sep. Purif. Technol., 12(1), 67 (1997)
Dave N, Do T, Puxty G, Rowland R, Feron PHM, Attalla MI, Energy Procedia, 1, 949 (2009)
Scovazzo P, Havard D, McShea M, Mixon S, Morgan D, J. Membr. Sci., 327(1-2), 41 (2009)
Ilconich J, Myers C, Pennline H, Luebke D, J. Membr. Sci., 298, 40 (2007)
Hanioka S, Maruyama T, Sotani T, Teramoto M, Matsuyama H, Nakashima K, Hanaki M, Kubota F, Goto M, J. Membr. Sci., 314(1-2), 1 (2008)
Myers C, Pennline H, Luebke D, Ilconich J, Dixon JK, Maginn EJ, Brennecke JF, J. Membr. Sci., 322(1), 28 (2008)
Yoo S, Won J, Kang SW, Kang YS, Nagase S, J. Membr. Sci., 363(1-2), 72 (2010)
Neves LA, Crespo JG, Coelhoso IM, J. Membr. Sci., 357(1-2), 160 (2010)
Iarikov DD, Hacarlioglu P, Oyama ST, Chem. Eng. J., 166(1), 401 (2011)
Chinn D, Vu DQ, Driver MS, Boudreau LS, US Patent US20,060,251,558A1, November 9 (2006).
Camper D, Bara JE, Gin DL, Noble RD, Ind. Eng. Chem. Res., 47(21), 8496 (2008)
Wang Y, Fang C, Zhang F, Geng J, Wu Y, Geng J, Zhang Z, CIESC J., 60, 2781 (2009)
Ahmady A, Hashim MA, Aroua MK, J. Chem. Eng. Data, 55(12), 5733 (2010)
Zhang F, Fang CG, Wu YT, Wang YT, Li AM, Zhang ZB, Chem. Eng. J., 160(2), 691 (2010)
Cadena C, Anthony JL, Shah JK, Morrow TI, Brennecke JF, Maginn EJ, J. Am. Chem. Soc., 126(16), 5300 (2004)
Ha SH, Koo YM, Korean J. Chem. Eng., 28(11), 2095 (2011)
Kim DW, Roshan R, Tharun J, Cherian A, Park DW, Korean J. Chem. Eng., 30(11), 1973 (2013)
Kim JE, Kim HJ, Lim JS, Fluid Phase Equilib., 367, 151 (2014)
Kim JE, Kang JW, Lim JS, Korean J. Chem. Eng., 32(8), 1678 (2015)
Song HN, Lee BC, Lim JS, J. Chem. Eng. Data, 55(2), 891 (2010)
Kim SA, Yim JH, Lim JS, Fluid Phase Equilib., 332, 28 (2012)
Yim JH, Lim JS, Fluid Phase Equilib., 352, 67 (2013)
Prausnitz JM, Lichtenthaler RN, de Azevedo EG, Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd Ed., Prentice- Hall, NJ (1999).
McLinden MO, Klein SA, Lemmoon EW, Peskin AP, Thermodynamic Properties of Refrigerants and Refrigerant Mixtures Database (REFPROP) V.6.01, NIST, Gaithersburg, MD (1998).
Valderrama JO, Rojas RE, Ind. Eng. Chem. Res., 48(14), 6890 (2009)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로