ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 21, 2017
Accepted October 18, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Coal structure change by ionic liquid pretreatment for enhancement of fixed-bed gasification with steam and CO2

Department of Energy Systems Research, Ajou University, Woncheon-dong, Youngtong-gu, Suwon 16499, Korea 1Department of Chemical Engineering, McMaster University, Hamilton, Ontario, L8S 4L8, Canada 2Key Laboratory of Coal Gasification and Energy Chemical Engineering of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
htkim@ajou.ac.kr
Korean Journal of Chemical Engineering, February 2018, 35(2), 445-455(11), 10.1007/s11814-017-0296-6
downloadDownload PDF

Abstract

An innovative pretreatment of Indonesian low-rank coal (ILRC) by 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) ionic liquid (IL) was conducted. The obtained IL pretreated coal had a loose and porous structure. Fourier transform infrared spectroscopy (FTIR) and Brunauer-Emmett-Teller (BET) analysis showed that pretreated ILRC had a stronger absorption ability and an increased average pore size (from 23.6 to 51.8 nm). Steam-coal gasification was conducted to explore the effect of coal pretreatment. The result showed that 1.63-times more hydrogen was generated from pretreated coal compared to original (i.e., untreated) coal, and carbon conversion (Xc) increased from 89.03 to 97.25%. During CO2 coal gasification, IL pretreated coal had a greater CO2 consumption potential and generated more CO. The chemical exergy of syngas of the pretreated coal gasification was higher than that of the untreated coal gasification with CO2 at 900 °C. In addition, pretreated coal emitted less CO2 than untreated coal at 900 °C.

References

Kang TJ, Park HJ, Namkung H, Xu LH, Fan S, Kim HT, Korean J. Chem. Eng., 34(4), 1238 (2017)
Kang SH, Lee SJ, Jung WH, Chung SW, Yun Y, Jo SH, Park YC, Baek JI, Korean J. Chem. Eng., 30(1), 67 (2013)
Lee J, Kang SH, Kim HS, Jeon DH, Lee SJ, Chung SW, Lee JW, Yun Y, Ryu HJ, Baek JI, Korean J. Chem. Eng., 33(9), 2610 (2016)
Kang TJ, {Ark HJ, Namkung H, Xu LH, Park JH, Heo IJ, Chang TS, Kim BK, Kim HT, Korean J. Chem. Eng., 34(10), 2597 (2017)
Komarova E, Guhl S, Meyer B, Fuel, 152, 38 (2015)
Furmann A, Mastalerz M, Brassell SC, Schimmelmann A, Picardal F, Int. J. Coal Geol., 107, 141 (2013)
Ji H, Li Z, Peng Y, Yang Y, Tang Y, Liu Z, J. Nat. Gas Sci. Eng., 19, 287 (2014)
Clarkson CR, Bustin RM, Fuel, 78(11), 1333 (1999)
Zou M, Wei C, Huang Z, Wei S, J. Nat. Gas Sci. Eng., 27, 776 (2015)
Okolo GN, Everson RC, Neomagus HWJP, Roberts MJ, Sakurovs R, Fuel, 141, 293 (2015)
Tanner J, Bhattacharya S, Chem. Eng. J., 285, 331 (2016)
Wang LY, Jiang SG, Xu YL, Zhang WQ, Kou LW, Wu ZY, Chu TX, Procedia Eng., 26, 647 (2011)
Fan X, Wei XY, Zong ZM, Fuel, 109, 28 (2013)
Lei ZP, Cheng LL, Zhang SF, Zhang YQ, Shui HF, Ren SB, Wang ZC, Fuel Process. Technol., 129, 222 (2015)
Liu S, Zhou W, Tang F, Guo BF, Zhang YT, Yin RH, Fuel, 160, 495 (2015)
Fan S, Yuan X, Zhao L, Xu LH, Kang TJ, Kim HT, Fuel, 165, 397 (2016)
Lei ZP, Wu L, Zhang YQ, Shui HF, Wang ZC, Ren SB, Fuel Process. Technol., 111, 118 (2013)
Cetiner R, The Pennsylvania State University (2011).
Lei ZP, Wu L, Zhang YQ, Shui HF, Wang ZC, Pan CX, Li HP, Ren SB, Kang SG, Fuel, 95(1), 630 (2012)
Cummings J, Shah K, Atkin R, Moghtaderi B, Fuel, 143, 244 (2015)
Prins MJ, Ptasinski KJ, Janssen FJJG, Energy, 32(7), 1248 (2007)
Jurascik M, Sues A, Ptasinski KJ, Energy, 35(2), 880 (2010)
Karamarkovic R, Karamarkovic V, Energy, 35(2), 537 (2010)
Janajreh I, Raza SS, Valmundsson AS, Energy Conv. Manag., 65, 801 (2013)
He C, Feng X, Chu KH, Appl. Energy, 111, 742 (2013)
Channiwala SA, Parikh PP, Fuel, 81(8), 1051 (2002)
Szargut J, Morris DR, Steward FR, Hemisphere, New York (1987).
Zhang W, Jiang S, Wu Z, Shao H, Int. J. Min. Sci. Technol., 22, 687 (2012)
Ibarra J, Munoz E, Moliner R, Org. Geochem., 24, 725 (1996)
Zhang L, Kajitani S, Umemoto S, Wang S, Quyn D, Song Y, Li TT, Zhang S, Dong L, Li CZ, Fuel, 158, 711 (2015)
Wang Z, Li L, Shui H, Lei Z, Ren S, Kang S, Pan C, J. Fuel Chem. Technol., 39, 401 (2011)
Guillen M, Iglesias M, Dominguez A, Blanco C, Energy Fuels, 6, 518 (1992)
Niu ZY, Liu GJ, Yin H, Wu D, Zhou CC, Fuel, 172, 1 (2016)
Bai L, Nie Y, Huang JC, Li Y, Dong HF, Zhang XP, Fuel, 112, 289 (2013)
Wang L, Xu Y, Jiang S, Yu M, Chu T, Zhang W, Wu Z, Kou L, Saf. Sci., 50, 1528 (2012)
Hattingh BB, Everson RC, Neomagus HWJP, Bunt JR, Fuel Process. Technol., 92(10), 2048 (2011)
Wang YL, Zhu SH, Gao MQ, Yang ZR, Yan LJ, Bai YH, Li F, Fuel Process. Technol., 141, 9 (2016)
Skodras G, Sakellaropoulos G, Fuel Process. Technol., 77, 151 (2002)
Thiel C, Pohl M, Grahl S, Beckmann M, Fuel, 152, 88 (2015)
Lee CG, Hur H, Korean J. Chem. Eng., 28(7), 1539 (2011)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로