ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received November 3, 2018
Accepted March 11, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Production of levulinic acid and ethyl levulinate from cellulosic pulp derived from the cooking of lignocellulosic biomass with active oxygen and solid alkali

1Xiamen Key Laboratory of Clean and High-valued Applications of Biomass, College of Energy, Xiamen University, Xiamen 361102, China 2Fujian Engineering and Research Center of Clean and High-valued Technologies for Biomass, Xiamen 361005, Fujian, China
x.tang@xmu.edu.cn
Korean Journal of Chemical Engineering, May 2019, 36(5), 740-752(13), 10.1007/s11814-019-0254-6
downloadDownload PDF

Abstract

Biomass-derived levulinic acid (LA) and its esters are currently envisaged as versatile, renewable platform chemicals. In this study, cellulosic pulp derived from the cooking of lignocellulosic biomass with active oxygen and solid alkali was employed as raw material for the formation of LA or ethyl levulinate (EL). This pretreatment process is highly effective for the delignification and deconstruction of lignocellulose matrix, making a facile degradation of the resulting cellulosic pulp to LA or EL. At this point, the acid-catalyzed hydrolysis or ethanolysis of cellulosic pulp was optimized by response surface methodology (RSM), offering desirable LA yield of 65.3% or EL yield of 62.7%, which is significantly higher than those obtained from raw biomass. More importantly, coking behavior on the inwall of the reactor was eliminated during the hydrolysis or ethanolysis of cellulosic pulp, which is one of the top challenges for the acid-catalyzed conversion of biomass in an industrial scale.

References

Tan Z, Chen K, Liu P, Renew. Sust. Energ. Rev., 41, 368 (2015)
Pileidis FD, Titirici MM, ChemSusChem, 9, 562 (2016)
Kataria R, Mol A, Schulten E, Happel A, Mussatto SI, Ind. Crop. Prod., 106, 48 (2017)
Apiwatanapiwat W, Vaithanomsat P, Ushiwaka S, Morimitsu K, Machida M, Thanapase W, Murata Y, Kosugi A, Biomass Convers. Bior., 6, 181 (2016)
Janusz G, Pawlik A, Sulej J, Swiderska-Burek U, Jarosz-Wilkolazka A, Paszcznski A, Fems Microbiol. Rev., 41, 941 (2017)
Wang W, Zhang C, Sun X, Su S, Li Q, Linhardt RJ, World J. Microbiol. Biotechnol., 33, 125 (2017)
Alvarez-Vasco C, Ma R, Quintero M, Guo M, Geleynse S, Ramasamy KK, Wolcott M, Zhang X, Green Chem., 18, 5133 (2016)
Francisco M, van den Bruinhorst A, Kroon MC, Green Chem., 14, 2153 (2012)
Tadesse H, Luque R, Energy Environ. Sci., 4, 3913 (2011)
Vallejos ME, Zambon MD, Area MC, da Silva Curvelo AA, Ind. Crop. Prod., 65, 349 (2015)
Kvarnlof N, Germgard U, BioResources, 10, 3934 (2015)
Naqvi M, Dahlquist E, Nizami AS, Danish M, Naqvi S, Farooq U, Qureshi AS, Rehan M, Energy Procedia, 142, 977 (2017)
Jiang Y, Zeng X, Luque R, Tang X, Sun Y, Lei T, Liu S, Lin L, ChemSusChem, 10, 3982 (2017)
Jiang Y, Ding N, Luo B, Li Z, Tang X, Zeng X, Sun Y, Liu S, Lei T, Lin L, ChemCatChem, 9, 2544 (2017)
Yang Q, Shi J, Lin L, Zhuang J, Pang C, Xie T, Liu Y, J. Agric. Food Chem., 60, 4656 (2012)
Bozell JJ, Moens L, Elliott D, Wang Y, Neuenscwander G, Fitzpatrick S, Bilski R, Jarnefeld J, Resour. Conserv. Recycl., 28, 227 (2000)
Im H, Kim B, Lee JW, Bioresour. Technol., 193, 386 (2015)
Kim TH, Oh YK, Lee JW, Chang YK, Algal Res., 26, 431 (2017)
Yang J, Park J, Son J, Kim B, Lee JW, Bioresour. Technol. Rep., 2, 84 (2018)
Li X, Lei T, Wang Z, Li X, Wen M, Yang M, Chen G, He X, Guan Q, Li Z, Ind. Crop. Prod., 116, 73 (2018)
Liu CG, Feng QN, Yang JR, Qi XH, Bioresour. Technol., 255, 50 (2018)
Du J, Xiong C, Luo B, Sun Y, Tang X, Zeng X, Lei T, Liu S, Lin L, BioResources, 12, 5851 (2017)
Chang C, Cen PL, Ma XJ, Bioresour. Technol., 98(7), 1448 (2007)
Jeong GT, Park DH, Appl. Biochem. Biotechnol., 161(1-8), 41 (2010)
Peng L, Lin L, Li H, Ind. Crop. Prod., 40, 136 (2012)
Li H, Peng L, Lin L, Chen K, Zhang H, J. Energy Chem., 22, 895 (2013)
Chang C, Xu GZ, Jiang XX, Bioresour. Technol., 121, 93 (2012)
Rackemann DW, Bartley JP, Harrison MD, Doherty WO, RSC Adv., 6, 74525 (2016)
Ding D, Xi J, Wang J, Liu X, Lu G, Wang Y, Green Chem., 17, 4037 (2015)
Gamez S, Gonzalez-Cabriales JJ, Ramirez JA, Garrote G, Vazquez M, J. Food Eng., 74(1), 78 (2006)
Kim HS, Jeong GT, Korean J. Chem. Eng., 35(11), 2232 (2018)
Zhong K, Wang Q, Carbohydr. Polym., 80, 19 (2010)
Ramli NAS, Amin NAS, BioEnergy Res., 10, 50 (2017)
Yang C, Song HL, Chen F, Zou T, J. Food Sci., 76, C1267 (2011)
Muranaka Y, Suzuki T, Sawanishi H, Hasegawa I, Mae K, Ind. Eng. Chem. Res., 53(29), 11611 (2014)
Shen F, Smith RL, Li L, Yan L, Qi X, ACS Sustainable Chem. Eng., 5, 2421 (2017)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로