Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 26, 2020
Accepted June 4, 2020
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Electrochemical impedance analysis of proton exchange membrane fuel cells with various cathode configurations
Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Korea
vitalspark@kw.ac.kr
Korean Journal of Chemical Engineering, August 2020, 37(8), 1394-1400(7), 10.1007/s11814-020-0605-3
Download PDF
Abstract
Various porous flow fields have been proposed and developed for the cathode configuration of proton exchange membrane fuel cells to replace conventional channel-land flow fields. This study demonstrates the physical properties of porous metallic flow field and gas diffusion layers and quantifies the respective resistances during the oxygen reduction reaction in proton exchange membrane fuel cells with four different cathode configurations using electrochemical impedance spectroscopy and a theoretical model. The contribution of the flow field and gas diffusion layer to the oxygen reduction reaction is discussed, along with the relationship between the physical properties of these structures and water transport in the proton exchange membrane fuel cell.
Keywords
References
Chalk SG, Miller JE, J. Power Sources, 159(1), 73 (2006)
Park S, Shao Y, Liu J, Wang Y, Energy Environ. Sci., 5, 9931 (2012)
Peighambardoust SJ, Rowshanzamir S, Amjadi M, Int. J. Hydrog. Energy, 35(17), 9349 (2010)
Ahluwalia RK, Wang XH, J. Power Sources, 177(1), 167 (2008)
Chandan A, Hattenberger M, El-Kharouf A, Du SF, Dhir A, Self V, Pollet BG, Ingram A, Bujalski W, J. Power Sources, 231, 264 (2013)
Kandlikar SG, Lu Z, Appl. Therm. Eng., 29, 1276 (2009)
Aiyejina A, Sastry MKS, J. Fuel Cell Sci. Tech., 9, 1 (2012)
Cho KT, Mench MM, Int. J. Hydrog. Energy, 35(22), 12329 (2010)
Li WK, Zhang QL, Wang C, Yan XH, Shen SY, Xia GF, Zhu FJ, Zhang JL, Appl. Energy, 195, 278 (2017)
Manso AP, Marzo FF, Barranco J, Garikano X, Mujika MG, Int. J. Hydrog. Energy, 37(20), 15256 (2012)
Asri NF, Husaini T, Sulong A, Majlan EH, Daud WRW, Int. J. Hydrog. Energy, 42(14), 9135 (2017)
Baker DR, Caulk DA, Neyerlin KC, Murphy MW, J. Electrochem. Soc., 156(9), B991 (2009)
Nonoyama N, Okazaki S, Weber AZ, Ikogi Y, Yoshida T, J. Electrochem. Soc., 158(4), B416 (2011)
Mashio T, Ohma A, Yamamoto S, Shinohara K, ECS Trans., 11, 529 (2007)
Park S, Lee JW, Popov BN, Int. J. Hydrog. Energy, 37(7), 5850 (2012)
St-Pierre J, Fuel Cells, 2, 263 (2011)
Cindrella L, Kannan AM, Lin JF, Saminathan K, Ho Y, Lin CW, Wertz J, J. Power Sources, 194(1), 146 (2009)
Park S, Lee JW, Popov BN, J. Power Sources, 163(1), 357 (2006)
Park S, Popov BN, Fuel, 90(1), 436 (2011)
Manahan MP, Hatzell MC, Kumbur EC, Mench MM, J. Power Sources, 196(13), 5573 (2011)
Manahan MP, Mench MM, J. Electrochem. Soc., 159(7), F322 (2012)
Srouji AK, Zheng LJ, Dross R, Turhan A, Mench MM, J. Power Sources, 218, 341 (2012)
Sim Y, Kwak J, Kim S, Jo Y, Kim S, Kim S, Kim J, Lee C, Jo J, Kwon S, J. Mater. Chem. A, 6, 1504 (2018)
Joo D, Jin SM, Jang JH, Park S, Fuel Cells, 18, 57 (2018)
Srouji AK, Zheng LJ, Dross R, Turhan A, Mench MM, J. Power Sources, 239, 433 (2013)
Srouji AK, Zheng LJ, Dross R, Aaron D, Mench MM, J. Power Sources, 364, 92 (2017)
Kim JR, Yi JS, Song TW, J. Power Sources, 220, 54 (2012)
Yi JS, Song TW, J. Electrochem. Soc., 160(2), F141 (2013)
Kwon K, Park JO, Yoo DY, Yi JS, Electrochim. Acta, 54(26), 6570 (2009)
Makharia R, Mathias MF, Baker DR, J. Electrochem. Soc., 152(5), A970 (2005)
Malevich D, Jayasankar BR, Halliop E, Pharoah JG, Peppley BA, Karan K, J. Electrochem. Soc., 159(12), F888 (2012)
Springer TE, Zawodzinski TA, Wilson MS, Gottesfeld S, J. Electrochem. Soc., 143(2), 587 (1996)
Guo QZ, White RE, J. Electrochem. Soc., 151(4), E133 (2004)
Schneider IA, Freunberger SA, Kramer D, Wokaun A, Scherer GG, J. Electrochem. Soc., 154(4), B383 (2007)
Cetinbas FC, Ahluwalia RK, Shum AD, Zenyuk IV, J. Electrochem. Soc., 166(7), F3001 (2019)
Park S, Shao Y, Liu J, Wang Y, Energy Environ. Sci., 5, 9931 (2012)
Peighambardoust SJ, Rowshanzamir S, Amjadi M, Int. J. Hydrog. Energy, 35(17), 9349 (2010)
Ahluwalia RK, Wang XH, J. Power Sources, 177(1), 167 (2008)
Chandan A, Hattenberger M, El-Kharouf A, Du SF, Dhir A, Self V, Pollet BG, Ingram A, Bujalski W, J. Power Sources, 231, 264 (2013)
Kandlikar SG, Lu Z, Appl. Therm. Eng., 29, 1276 (2009)
Aiyejina A, Sastry MKS, J. Fuel Cell Sci. Tech., 9, 1 (2012)
Cho KT, Mench MM, Int. J. Hydrog. Energy, 35(22), 12329 (2010)
Li WK, Zhang QL, Wang C, Yan XH, Shen SY, Xia GF, Zhu FJ, Zhang JL, Appl. Energy, 195, 278 (2017)
Manso AP, Marzo FF, Barranco J, Garikano X, Mujika MG, Int. J. Hydrog. Energy, 37(20), 15256 (2012)
Asri NF, Husaini T, Sulong A, Majlan EH, Daud WRW, Int. J. Hydrog. Energy, 42(14), 9135 (2017)
Baker DR, Caulk DA, Neyerlin KC, Murphy MW, J. Electrochem. Soc., 156(9), B991 (2009)
Nonoyama N, Okazaki S, Weber AZ, Ikogi Y, Yoshida T, J. Electrochem. Soc., 158(4), B416 (2011)
Mashio T, Ohma A, Yamamoto S, Shinohara K, ECS Trans., 11, 529 (2007)
Park S, Lee JW, Popov BN, Int. J. Hydrog. Energy, 37(7), 5850 (2012)
St-Pierre J, Fuel Cells, 2, 263 (2011)
Cindrella L, Kannan AM, Lin JF, Saminathan K, Ho Y, Lin CW, Wertz J, J. Power Sources, 194(1), 146 (2009)
Park S, Lee JW, Popov BN, J. Power Sources, 163(1), 357 (2006)
Park S, Popov BN, Fuel, 90(1), 436 (2011)
Manahan MP, Hatzell MC, Kumbur EC, Mench MM, J. Power Sources, 196(13), 5573 (2011)
Manahan MP, Mench MM, J. Electrochem. Soc., 159(7), F322 (2012)
Srouji AK, Zheng LJ, Dross R, Turhan A, Mench MM, J. Power Sources, 218, 341 (2012)
Sim Y, Kwak J, Kim S, Jo Y, Kim S, Kim S, Kim J, Lee C, Jo J, Kwon S, J. Mater. Chem. A, 6, 1504 (2018)
Joo D, Jin SM, Jang JH, Park S, Fuel Cells, 18, 57 (2018)
Srouji AK, Zheng LJ, Dross R, Turhan A, Mench MM, J. Power Sources, 239, 433 (2013)
Srouji AK, Zheng LJ, Dross R, Aaron D, Mench MM, J. Power Sources, 364, 92 (2017)
Kim JR, Yi JS, Song TW, J. Power Sources, 220, 54 (2012)
Yi JS, Song TW, J. Electrochem. Soc., 160(2), F141 (2013)
Kwon K, Park JO, Yoo DY, Yi JS, Electrochim. Acta, 54(26), 6570 (2009)
Makharia R, Mathias MF, Baker DR, J. Electrochem. Soc., 152(5), A970 (2005)
Malevich D, Jayasankar BR, Halliop E, Pharoah JG, Peppley BA, Karan K, J. Electrochem. Soc., 159(12), F888 (2012)
Springer TE, Zawodzinski TA, Wilson MS, Gottesfeld S, J. Electrochem. Soc., 143(2), 587 (1996)
Guo QZ, White RE, J. Electrochem. Soc., 151(4), E133 (2004)
Schneider IA, Freunberger SA, Kramer D, Wokaun A, Scherer GG, J. Electrochem. Soc., 154(4), B383 (2007)
Cetinbas FC, Ahluwalia RK, Shum AD, Zenyuk IV, J. Electrochem. Soc., 166(7), F3001 (2019)