Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 20, 2020
Accepted March 7, 2021
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
A thixotropic fluid flow around two sequentially aligned spheres
1Department of Mechanical Science & Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA 2Department of Chemical and Biological Engineering, Sookmyung Women’s University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Korea 3Institute of Advanced Materials and Systems, Sookmyung Women’s University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Korea
Korean Journal of Chemical Engineering, July 2021, 38(7), 1460-1468(9), 10.1007/s11814-021-0780-x
Download PDF
Abstract
We studied the thixotropic-hydrodynamic interaction of particles resulting from a combination of external flow conditions and intrinsic thixotropy of a fluid. As a model system, a low Reynolds number Moore thixotropic fluid flow around two sequentially aligned sphere was simulated using the standard Galerkin finite element method. The drag coefficients of each sphere were used to quantitively characterize the thixotropic-hydrodynamic interaction between the two spheres. First, hydrodynamic interaction change according to the external flow condition was identified at a fixed distance. Subsequently, the parametric analysis was extended to incorporate the effect of the geometrical condition, the sphere-sphere distance parameter. This yields a conceptual map that distinguishes the thixotropic-hydrodynamic interaction into three different types: the geometric hydrodynamic interaction, combination of geometric and local thixotropic interaction, and global thixotropic-hydrodynamic interaction.
References
Mewis J, Wagner NJ, Colloidal suspension rheology, Cambridge University Press, Cambridge (2011).J. Mewis and N. J. Wagner, Colloidal suspension rheology, Cambridge University Press, Cambridge (2011).
Goodeve CF, Trans. Faraday Soc., 35, 342 (1939)
Moore F, Trans. J. Br. Ceram. Soc., 58, 470 (1959)
Stickel JJ, Phillips RJ, Powell RL, J. Rheol., 50(4), 379 (2006)
Goddard JD, J. Non-Newton. Fluid Mech., 14, 141 (1984)
Patel PD, Russel WB, Colloids Surf., 31, 355 (1988)
Potanin AA, J. Colloid Interface Sci., 145, 140 (1991)
Barnes HA, J. Non-Newton. Fluid Mech., 70(1-2), 1 (1997)
Lopez-Aguilar JE, Webster MF, Tamaddon-Jahromi HR, Manero O, Rheol. Acta, 55(3), 197 (2016)
Derksen JJ, Appl. Math. Model., 35, 1656 (2011)
Kim J, Park JD, Appl. Math. Model., 82, 848 (2020)
Lopez-Aguilar JE, Webster MF, Tamaddon-Jahoromi HR, Manero O, Rheol. Acta, 54, 307 (2014)
Ouyang L, Wu Z, Wang J, Qi X, Li Q, Wang J, Lu S, RSC Adv., 10, 19360 (2020)
Shikinaka K, Taki N, Kaneda K, Tominaga Y, Chem. Comm., 53, 613 (2016)
Balhoff MT, Thompson KE, Chem. Eng. Sci., 61(2), 698 (2006)
Balhoff MT, Thompson KE, AIChE J., 50(12), 3034 (2004)
Kim KH, Chang HN, Biotechnol. Bioeng., 28, 452 (1986)
Engmann J, Burbidge AS, Food Fucnt., 4, 443 (2013)
Quemada D, Droz R, Biorhelogy, 20, 635 (1983)
de Kretser RG, Boger DV, Rheol. Acta, 40(6), 582 (2001)
Zanna N, Tomasini C, Gels, 3, 39 (2017)
Mortazavi-Manesh S, Shaw JM, Energy Fuels, 28(2), 972 (2014)
Happel J, Brenner H, Low Reynolds number hydrodynamics, Prentice-Hall, London (1965).
Stimson M, Jeffrey GB, Proc. R. Soc. Lond. Series A, 111, 110 (1926)
Arndt D, Bangerth W, Davydov D, Heister T, Heltai L, Kronbichler M, Maier M, Pelteret JP, Turcksin B, Wells D, J. Numer. Math., 25, 137 (2017)
Taylor C, Hood P, Comput. Fluids, 1, 73 (1973)
Brooks AN, Hughes TJR, Comput. Methods in Appl. Mech. Eng., 32, 199 (1982)
Geuzaine C, Remacle JF, Int. J. Numer. Eng., 79, 1309 (2009)
Saad Y, Schultz MH, SIAM J. Sci. and Stat. Comp., 7, 856 (1986)
Goodeve CF, Trans. Faraday Soc., 35, 342 (1939)
Moore F, Trans. J. Br. Ceram. Soc., 58, 470 (1959)
Stickel JJ, Phillips RJ, Powell RL, J. Rheol., 50(4), 379 (2006)
Goddard JD, J. Non-Newton. Fluid Mech., 14, 141 (1984)
Patel PD, Russel WB, Colloids Surf., 31, 355 (1988)
Potanin AA, J. Colloid Interface Sci., 145, 140 (1991)
Barnes HA, J. Non-Newton. Fluid Mech., 70(1-2), 1 (1997)
Lopez-Aguilar JE, Webster MF, Tamaddon-Jahromi HR, Manero O, Rheol. Acta, 55(3), 197 (2016)
Derksen JJ, Appl. Math. Model., 35, 1656 (2011)
Kim J, Park JD, Appl. Math. Model., 82, 848 (2020)
Lopez-Aguilar JE, Webster MF, Tamaddon-Jahoromi HR, Manero O, Rheol. Acta, 54, 307 (2014)
Ouyang L, Wu Z, Wang J, Qi X, Li Q, Wang J, Lu S, RSC Adv., 10, 19360 (2020)
Shikinaka K, Taki N, Kaneda K, Tominaga Y, Chem. Comm., 53, 613 (2016)
Balhoff MT, Thompson KE, Chem. Eng. Sci., 61(2), 698 (2006)
Balhoff MT, Thompson KE, AIChE J., 50(12), 3034 (2004)
Kim KH, Chang HN, Biotechnol. Bioeng., 28, 452 (1986)
Engmann J, Burbidge AS, Food Fucnt., 4, 443 (2013)
Quemada D, Droz R, Biorhelogy, 20, 635 (1983)
de Kretser RG, Boger DV, Rheol. Acta, 40(6), 582 (2001)
Zanna N, Tomasini C, Gels, 3, 39 (2017)
Mortazavi-Manesh S, Shaw JM, Energy Fuels, 28(2), 972 (2014)
Happel J, Brenner H, Low Reynolds number hydrodynamics, Prentice-Hall, London (1965).
Stimson M, Jeffrey GB, Proc. R. Soc. Lond. Series A, 111, 110 (1926)
Arndt D, Bangerth W, Davydov D, Heister T, Heltai L, Kronbichler M, Maier M, Pelteret JP, Turcksin B, Wells D, J. Numer. Math., 25, 137 (2017)
Taylor C, Hood P, Comput. Fluids, 1, 73 (1973)
Brooks AN, Hughes TJR, Comput. Methods in Appl. Mech. Eng., 32, 199 (1982)
Geuzaine C, Remacle JF, Int. J. Numer. Eng., 79, 1309 (2009)
Saad Y, Schultz MH, SIAM J. Sci. and Stat. Comp., 7, 856 (1986)