Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 11, 2021
Accepted August 7, 2021
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Enhancement of supercritical carbon dioxide solubility modelsusing molecular simulation data
Hojatollah Moradi1
Nariman Rezamandi1
Hedayat Azizpour1 2†
Hossein Bahmanyar1†
Kamran Keynejad2
Zahra Nasrollahi2
1Surface Phenomena and Liquid-Liquid Extraction Research Laboratory, School of Chemical Engineering, University of Tehran, Tehran, Iran 2Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman, Iran
h.azizpour@ut.ac.ir
Korean Journal of Chemical Engineering, March 2022, 39(3), 717-723(7), 10.1007/s11814-021-0922-1
Download PDF
Abstract
Supercritical carbon dioxide (SC-CO2) has been used in a broad range of industrial applications due to its unique properties, which underlines the importance of understanding its exact behavior under different operating conditions. In this study, the solubility parameter (SP) of SC-CO2 was calculated using molecular dynamics simulation at varying temperature and pressure and different concentrations of methanol as a co-solvent. The obtained simulation results were used to create a model for solubility parameter using response surface methodology (RSM). These data were then used to improve three available empirical correlations of SC-CO2’s solubility parameter. The resulting equations were vastly superior in predicting the solubility parameter with an average coefficient of determination of 96.33%.
References
Du Y, Zhang H, Li X, Zhang Y, Yuan S, Energy Fuels, 34, 3483 (2020)
Tarabasz K, Krzysztoforski J, Szwast M, Henczka M, Mater. Lett., 163, 54 (2016)
Ougiyanagi J, Meguro Y, Yoshida Z, Imura H, Ohashi K, Talanta, 59, 1189 (2003)
Sahena F, Zaidul ISM, Jinap S, Karim AA, Abbas KA, Norulaini NAN, Omar AKM, J. Food Eng., 95, 240 (2009)
Hildebrand JH, Wood SE, J. Chem. Phys., 1, 817 (1933)
Hildebrand JH, J. Soc. Chem. Indus., 55, 665 (1936)
Hui L, Rui W, Weiyu F, Zhaomin L, Tao M, Guozhi N, Acta Petrolei Sinica, 31, 78 (2015)
Marcus Y, ACS Omega, 3, 524 (2018)
Zhang M, Dou M, Wang M, Yu Y, J. Mol. Liq., 248, 322 (2017)
Marcus Y, J. Supercrit. Fluids, 38, 7 (2006)
Marcus Y, J. Solution Chem., 48, 1025 (2019)
Barton AFM, Chem. Rev., 75, 731 (1975)
Hildebrand J, Scott RL, The solubility of nonelectrolytes, Reinhold Publication Corp. New York (1950).
Hansen CM, The three dimensional solubility parameter and solvent diffusion coefficient, Danish Technical Press, Copenhagen (1967).
Giddings JC, Myers MN, McLaren L, Keller RA, Science,, 162, 67 (1968)
Panayiotou C, Fluid Phase Equilib., 131, 21 (1997)
Moradi H, Azizpour H, Bahmanyar H, Mohammadi N, Akbari M, Heliyon, 6, 5385 (2020)
Moradi H, Azizpour H, Bahmanyar H, Mohammadi M, Inorg. Chem. Commun., 118, 108048 (2020)
Jafari L, Moradi H, Tavan Y, Chem. Pap., 74, 651 (2020)
Emamian M, Azizpour H, Moradi H, Keynejad K, Bahmanyar H, Nasrollahi Z, Chem. Prod. Process Model. (2021).
Moradi H, Azizpour H, Bahmanyar H, Rezamandi N, Zahedi P, Chem. Eng. Technol., 44, (2021).
Cheng X, Feng C, Wang Y, Wang L, Chem. Online, 10, (2000).
Tong Y, Li H, Zhai S, Wang K, An Q, J. Chem. Thermodyn.,, 141, 105952 (2020)
Shahamat M, Rey AD, Polym. J., 54, 4997 (2013)
Dobbs JM, Wong JM, Lahiere RJ, Johnston KP, Ind. Eng. Chem. Res., 26, 56 (1987)
Ting SST, Macnaughton SJ, Tomasko DL, Foster NR, Ind. Eng. Chem. Res., 32, 1471 (1993)
Tarabasz K, Krzysztoforski J, Szwast M, Henczka M, Mater. Lett., 163, 54 (2016)
Ougiyanagi J, Meguro Y, Yoshida Z, Imura H, Ohashi K, Talanta, 59, 1189 (2003)
Sahena F, Zaidul ISM, Jinap S, Karim AA, Abbas KA, Norulaini NAN, Omar AKM, J. Food Eng., 95, 240 (2009)
Hildebrand JH, Wood SE, J. Chem. Phys., 1, 817 (1933)
Hildebrand JH, J. Soc. Chem. Indus., 55, 665 (1936)
Hui L, Rui W, Weiyu F, Zhaomin L, Tao M, Guozhi N, Acta Petrolei Sinica, 31, 78 (2015)
Marcus Y, ACS Omega, 3, 524 (2018)
Zhang M, Dou M, Wang M, Yu Y, J. Mol. Liq., 248, 322 (2017)
Marcus Y, J. Supercrit. Fluids, 38, 7 (2006)
Marcus Y, J. Solution Chem., 48, 1025 (2019)
Barton AFM, Chem. Rev., 75, 731 (1975)
Hildebrand J, Scott RL, The solubility of nonelectrolytes, Reinhold Publication Corp. New York (1950).
Hansen CM, The three dimensional solubility parameter and solvent diffusion coefficient, Danish Technical Press, Copenhagen (1967).
Giddings JC, Myers MN, McLaren L, Keller RA, Science,, 162, 67 (1968)
Panayiotou C, Fluid Phase Equilib., 131, 21 (1997)
Moradi H, Azizpour H, Bahmanyar H, Mohammadi N, Akbari M, Heliyon, 6, 5385 (2020)
Moradi H, Azizpour H, Bahmanyar H, Mohammadi M, Inorg. Chem. Commun., 118, 108048 (2020)
Jafari L, Moradi H, Tavan Y, Chem. Pap., 74, 651 (2020)
Emamian M, Azizpour H, Moradi H, Keynejad K, Bahmanyar H, Nasrollahi Z, Chem. Prod. Process Model. (2021).
Moradi H, Azizpour H, Bahmanyar H, Rezamandi N, Zahedi P, Chem. Eng. Technol., 44, (2021).
Cheng X, Feng C, Wang Y, Wang L, Chem. Online, 10, (2000).
Tong Y, Li H, Zhai S, Wang K, An Q, J. Chem. Thermodyn.,, 141, 105952 (2020)
Shahamat M, Rey AD, Polym. J., 54, 4997 (2013)
Dobbs JM, Wong JM, Lahiere RJ, Johnston KP, Ind. Eng. Chem. Res., 26, 56 (1987)
Ting SST, Macnaughton SJ, Tomasko DL, Foster NR, Ind. Eng. Chem. Res., 32, 1471 (1993)