ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 19, 2023
Revised May 1, 2023
Accepted May 24, 2023
Acknowledgements
The authors would like to thank the Institute for Research and Community Service UIN Sunan Kalijaga Yogyakarta for the 2022 research grant for a research cluster of higher education collaborations. The authors also thank Mr. Wijayanto as laboratory assistant from the UIN Sunan Kalijaga Integrated Laboratory who has accompanied the research team in completing this research. In addition, the authors also thank Dr. Khurul Wardati as dean of the Faculty of Science and Technology, UIN Sunan Kalijaga for administ
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Potential organic magnetic nanoparticles from peel extract of Archidendron pauciflorum for the effective removal of cationic and anionic dyes

1Chemistry Department, Science and Technology Faculty, UIN Sunan Kalijaga Yogyakarta, Yogyakarta 55281, Indonesia 2Chemical Engineering Department, Faculty of Engineering Lambung Mangkurat University, Banjarbaru 70714, Indonesia
maya.rahmayanti@uin-suka.ac.id
Korean Journal of Chemical Engineering, November 2023, 40(11), 2759-2770(12), 10.1007/s11814-023-1499-7
downloadDownload PDF

Abstract

The adsorption of cationic (methylene blue, MB) and anionic (Congo red, CR) dyes using magnetic from Archidendron pauciflorum peel extract obtained via sonochemical synthesis (Fe3O4-AP) has been carried out. This study also compared the ability of Fe3O4-AP as an adsorbent for MB and CR through isotherm and kinetics studies. Fe3O4-AP was synthesized by the sonochemical method at a frequency of 800 kHz and characterized using FTIR, XRD, PSA, VSM and SEM-EDX. The XRD diffractogram showed Fe3O4-AP with high crystallinity with a crystal size of 17.05 nm, and the particle size distributed in three groups, 2.56, 862.23, and 4855.78 nm, respectively. Meanwhile, the Ms of Fe3O4-AP was 27.71 emu/g. The SEM-EDX showed disordered morphology with Fe, O and C elemental composition. The kinetics and isotherm of MB and CR dye adsorption on Fe3O4-AP followed Ho’s kinetics model and Freundlich isotherm. The Freundlich isotherm model with adsorption capacities MB and CR on Fe3O4-AP was 16.02 and 10.24 mg/g, respectively

References

1. F. M. Valadi, A. Ekramipooya and M. R. Gholami, J. Mol. Liq., 318, 114051 (2020).
2. Q. Wei, Y. Zhang, K. Zhang, J. I. Mwasiagi, X. Zhao, C. W. K. Chow and R. Tang, Korean J. Chem. Eng., 39, 1850 (2022).
3. Y. Zheng, X. Sun, X. Liu, X. Xia, L. Xiao, C. Cao, Q. Qian and Q. Chen, Ind. Crops Prod., 171, 113930 (2021).
4. T. K. N. Tran, V. T. Le, T. H. Nguyen, V. D. Doan, Y. Vasseghian and H. S. Le, Korean J. Chem. Eng., 40, 1650 (2023).
5. H. S. Devi, M. A. Boda, M. A. Shah, S. Parveen and A. H. Wani, Green Process. Synth., 8, 38 (2019).
6. M. Mabrouk, R. M. A. El-Wahab, H. H. Beherei, M. M. Selim and D. Das, Int. J. Pharm., 587, 119658 (2020).
7. E. Guo, G. Chen, D. Yu, Y. Qiu, S. Li and Y. Yu, J. Environ. Chem. Eng., 10, 108618 (2022).
8. N. S. El-Gendy and H. N. Nassar, Sci. Total Environ., 774, 145610 (2021).
9. K. Lakshmi and R. Rangasamy, J. Mol. Struct., 1224, 129081 (2021).
10. M. Rahmayanti, I. Nurhikmah and F. Larasati, Mol. Biol. (Mosc.), 16, 68 (2021).
11. W. Liu, H. Bai, W. Gao, Z. Chen, Z. Liu, Z. Chen and J. Chen, Korean J. Chem. Eng., 39, 2792 (2022).
12. A. Sebastian, A. Nangia and M. N. V. Prasad, J. Hazard. Mater., 371, 261 (2019).
13. S. Fakhari, M. Jamzad and H. Kabiri Fard, Green Chem. Lett. Rev., 12, 19 (2019).
14. F. Azadi, A. Karimi-Jashni and M. M. Zerafat, Ecotoxicol. Environ. Saf., 165, 467 (2018).
15. C. V. Khedkar, N. D. Khupse, B. R. Thombare, P. R. Dusane, G. Lole, R. S. Devan, A. S. Deshpande and S. I. Patil, Chem. Phys. Lett., 742, 137131 (2020).
16. A. Sebastian, A. Nangia and M. N. V. Prasad, J. Cleaner Prod., 174, 355 (2018).
17. L. Hiremath, N. K. Sura and P. Sukanya, Mater. Today Proc., 5, 21030 (2018).
18. H. Luo, S. Zhang, X. Li, X. Liu, Q. Xu, J. Liu and Z. Wang, J. Taiwan Inst. Chem. Eng., 72, 163 (2017).
19. M. Rahmayanti, A. Nurul Syakina, I. Fatimah and T. Sulistyaningsih, Chem. Phys. Lett., 803, 139834 (2022).
20. S. Charungchitrak, A. Petsom, P. Sangvanich and A. Karnchanatat, Food Chem., 126, 1025 (2011).
21. M. Rahmayanti, S. J. Santosa and S. Sutarno, Adv. Mater. Res., 1101, 286 (2015).
22. H. Zheng, D. Liu, Y. Zheng, S. Liang and Z. Liu, J. Hazard. Mater., 167, 141 (2009).
23. J. Wang and X. Guo, J. Hazard. Mater., 390, 122156 (2020).
24. Y. P. Yew, K. Shameli, M. Miyake, N. Kuwano, N. B. Bt Ahmad Khairudin, S. E. Bt Mohamad and K. X. Lee, Nanoscale Res. Lett., 11, 276 (2016).
25. H. Rasoulzadeh, A. Mohseni-Bandpei, M. Hosseini and M. Safari, Int. J. Biol. Macromol., 133, 712 (2019).
26. D. Ramutshatsha-Makhwedzha, A. Mavhungu, M. L. Moropeng and R. Mbaya, Heliyon, 8, e09930 (2022).
27. C. C. de Souza, L. Z. M. de Souza, M. Yılmaz, M. A. de Oliveira, A. C. da Silva Bezerra, E. F. da Silva, M. R. Dumont and A. R. T. Machado, Clean. Mater., 3, 100052 (2022).
28. P. C. Nnaji, V. C. Anadebe, I. G. Ezemagu and O. D. Onukwuli, Arab. J. Chem., 15, 103629 (2022).
29. M. Rahmayanti, A. Yahdiyani and I. Q. Afifah, Commun. Sci. Technol., 7, 119 (2022).
30. L. Ouma and A. Ofomaja, RSC Adv., 10, 2812 (2020).
31. M. Rahmayanti, S. J. Santosa and S. Sutarno, Indones. J. Chem., 16, 329 (2016).
32. S. V. Bhosale, S. R. Suryawanshi, S. V. Bhoraskar, M. A. More, D. S. Joag and V. L. Mathe, Mater. Res. Express, 2, 095001 (2015).
33. S. Nigam, K. C. Barick and D. Bahadur, J. Magn. Magn. Mater., 323, 237 (2011).
34. M. Masuku, L. Ouma and A. Pholosi, Environ. Nanotechnol. Monit. Manag., 15, 100429 (2021).
35. T. Babacan, D. Doğan, Ü. Erdem and A. Ü. Metin, Mater. Chem. Phys., 284, 126032 (2022).
36. M. Shamsipur and A. Ghavidast, J. Mol. Struct., 1263, 133130 (2022).
37. B. S. Damasceno, A. F. V. da Silva and A. C. V. de Araújo, J. Environ. Chem. Eng., 8, 103994 (2020).
38. R. Foroutan, R. Mohammadi and B. Ramavandi, Environ. Sci. Pol-lut. Res., 26, 19523 (2019).
39. C. González-Galán, A. Luna-Triguero, J.M. Vicent-Luna, A.P. Zaderenko, A. Sławek, R. Sánchez-de-Armas and S. Calero, Chem. Eng. J., 398, 125678 (2020).
40. M. A. Farghali, A. M. Selim, H. F. Khater, N. Bagato, W. Alharbi, K. H. Alharbi and I. Taha Radwan, Arab. J. Chem., 15, 104171 (2022).
41. L. Largitte and R. Pasquier, Chem. Eng. Res. Des., 109, 495 (2016).
42. M. Benjelloun, Y. Miyah, G. Akdemir Evrendilek, F. Zerrouq and S. Lairini, Arab. J. Chem., 14, 103031 (2021).
43. H. Freundlich, Z. Phys. Chem., 57U, 385 (1907).
44. J. Bensalah, A. Habsaoui, O. Dagdag, A. Lebkiri, I. Ismi, E. H. Rifi, I. Warad and A. Zarrouk, Chem. Data Collect., 35, 100756 (2021).
45. J. Xie, T. Yamaguchi and J.-M. Oh, J. Solid State Chem., 293, 121758 (2021).
46. M. Temkin and V. Pyzhev, Acta Physiochim. URSS, 12, 327 (1940).
47. H. Li, V. L. Budarin, J. H. Clark, M. North and X. Wu, J. Hazard.Mater., 436, 129174 (2022).
48. M. H. Beyki, M. Bayat and F. Shemirani, Bioresour. Technol., 218, 326 (2016).
49. T. Taher, R. Putra, N. Rahayu Palapa and A. Lesbani, Chem. Phys. Lett., 777, 138712 (2021).
50. A. N. Syakina and M. Rahmayanti, Chem. Data Collect., 44, 101003 (2023)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로