ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 17, 2022
Revised October 26, 2022
Accepted November 23, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

New non-interactive form of the proportional-integral-derivative-acceleration (PIDA) controller and its explicit tuning rule

1Department of Chemical Engineering, Kyungpook National University, Daegu 41566, Korea 2Department of Chemical Engineering, Sunchon National University, 225 Jungang-ro, Suncheon, Jeollanam-do 57922, Korea
khryu@scnu.ac.kr, suwhansung@knu.ac.kr
Korean Journal of Chemical Engineering, June 2023, 40(6), 1277-1283(7), 10.1007/s11814-022-1356-0
downloadDownload PDF

Abstract

The physical meaning of the derivative and the acceleration term of the proportional-integral-derivativeacceleration (PIDA) controller was analyzed, and a new non-interactive form of the PIDA controller is proposed. Also, a new tuning rule for the PIDA controller was developed by combining the physical meaning of the two derivative terms with the previous integral of the time-weighted absolute value of the error (ITAE) tuning rule for the PID controller. The proposed tuning rule, composed of simple explicit algebraic equations, provides excellent performance for various processes without using any optimization methods and iterative computation

References

1. C. Kravaris and I. K. Kookos, Understanding process dynamics and control, Cambridge University Press (2021).
2. S. W. Sung, J. Lee and I.-B. Lee, Process identification and PID control, John Wiley & Sons (2009).
3. L. Fan and E. M. Joo, Design for auto-tuning PID controller based on genetic algorithms, in: 2009 4th IEEE Conf. Ind. Electron. Appl.,
IEEE, 1924 (2009).
4. A. Zribi, M. Chtourou and M. Djemel, J. Circuits, Syst. Comput.,27, 1850065 (2018).
5. D. C. Meena and A. Devanshu, Genetic algorithm tuned PID controller for process control, in: 2017 Int. Conf. Inven. Syst. Control,IEEE, 1 (2017).
6. N. J. Killingsworth and M. Krstic, IEEE Control Syst. Mag., 26, 70(2006).
7. M. I. Solihin, L. F. Tack and M. L. Kean, Tuning of PID controller using particle swarm optimization (PSO), in: Proceeding Int. Conf.
Adv. Sci. Eng. Inf. Technol., 458 (2011).
8. J. G. Ziegler and N. B. Nichols, Optimum settings for automatic controllers, Trans. ASME. 64 (1942).
9. M. Morari and E. Zafiriou, Robust process control, Prentice Hall (1989).
10. S. W. Sung, J. Lee and I.-B. Lee, Process identification and PID control, John Wiley & Sons (2009).
11. S. W. Sung, I.-B. Lee, J. Lee and S.-H. Yi, J. Chem. Eng. Jpn., 29, 990(1996).
12. S. W. Sung and I.-B. Lee, Ind. Eng. Chem. Res., 35, 2596 (1996).
13. S. Skogestad, J. Process Control., 13, 291 (2003).
14. C. K. Yoo, H. J. Kwak and I.-B. Lee, Chem. Eng. Res. Des., 79, 754(2001)
15. S. Jung and R. C. Dorf, Analytic PIDA controller design technique for a third order system, in: Proc. 35th IEEE Conf. Decis. Control,IEEE, 2513 (1996).
16. S. Buakaew, W. Narksarp, C. Wongtaychatham and W. Sangpisit,PIDA controller realized on commercial IC current feedback operational amplifiers, in: Proc. Int. MultiConference Eng. Comput. Sci.(2017).
17. M. Kumar and Y. V. Hote, Robust IMC-PIDA controller design for load frequency control of a time delayed power system, in: 2019 IEEE 58th Conf. Decis. Control, IEEE, 8380 (2019).
18. D. Puangdownreong, ICA, 3, 303 (2012).
19. D. K. Sambariya and D. Paliwal, Optimal design of PIDA controller using harmony search algorithm for AVR power system, in: 2016 IEEE 6th Int. Conf. Power Syst., IEEE, 1 (2016).
20. M. Huba and D. Vrančič, IFAC-PapersOnLine, 51, 954 (2018).
21. M. A. Sahib, Eng. Sci. Technol. an Int. J., 18, 194 (2015).
22. D. K. Sambariya and D. Paliwal, Optimal design of PIDA controller using firefly algorithm for AVR power system, in: 2016 Int. Conf.Comput. Commun. Autom., IEEE, 987 (2016).
23. K. Donuk, N. Özbey, M. İnan, C. Yeroğlu and D. Hanbay, Investigation of PIDA controller parameters via PSO algorithm, in: 2018 Int. Conf. Artif. Intell. Data Process., IEEE, 1 (2018).
24. A. M. Mosaad, M. A. Attia and A. Y. Abdelaziz, Ain Shams Eng. J.,10, 755 (2019).
25. A. Sharma, H. Sharma, A. Bhargava and N. Sharma, Int. J. Metaheuristics, 5, 278 (2016)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로