Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 25, 2022
Revised January 10, 2023
Accepted February 9, 2023
- Acknowledgements
- This work is supported by the National Natural Science Foundation of China (61673349), Basic Public Welfare research Plan of Zhejiang Province (LGG19F030006) and Huzhou Key Laboratory of Intelligent Sensing and Optimal Control for Industrial Systems (2022-17).
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Sigma-point and stochastic gradient descent approach to solving global self-optimizing controlled variables
Abstract
Direct numerical optimization for the global self-optimizing control (gSOC) problem has been recently
attempted in the rigorous nonlinear programming (NLP) framework. Compared with the previous perturbation-based
SOC approaches, the global scheme is of potential to obtain solutions with better performances, as the economics are
evaluated via the rigorous nonlinear process model, rather than approximations using the Taylor expansion. The main
obstacles for solving the NLP are, however, difficulties for the statistical computations for the cost and constrained variables. In this paper, we firstly introduce the sigma-point approach, which generates less and more efficient sampling
points with linear complexity with respect to the uncertain variables, such that the computational load is eased. Furthermore, we incorporate the stochastic gradient descent algorithm to accelerate the search of optimal combination
matrix, which can be carried out upon evaluations of only a few, rather than all, sampling points. The scheme, therefore, makes it possible to deal with problems that have high dimensional uncertain parameters and/or when a single
evaluation of the cost is time-consuming. A batch reactor and a batch distillation column are investigated to show the
usefulness of the presented ideas.
References
2. I. J. Halvorsen, S. Skogestad, J. C. Morud and V. Alstad, Ind. Eng.Chem. Res., 42, 3273 (2003).
3. J. Jäschke, Y. Cao and V. Kariwala, Annu. Rev. Control, 43, 199 (2017).
4. V. Alstad and S. Skogestad, Ind. Eng. Chem. Res., 46, 846 (2007).
5. V. Kariwala, Ind. Eng. Chem. Res., 46, 3629 (2007).
6. V. Kariwala, Y. Cao and S. Janardhanan, Ind. Eng. Chem. Res., 47,1150 (2008).
7. V. Alstad, S. Skogestad and E. S. Hori, J. Process Control, 19, 138(2009).
8. L. Ye and Y. Cao, UKACC International Conference on Control,136 (2012).
9. L. Ye, Y. Cao, Y. Li and Z. Song, Ind. Eng. Chem. Res., 52, 798 (2013).
10. L. Ye, Y. Cao, X. Ma and Z. Song, Ind. Eng. Chem. Res., 53, 14695(2014).
11. L. Ye, Y. Cao and Y. Xiao, Ind. Eng. Chem. Res., 54, 12040 (2015).
12. Z. Zhao, Y. Li, T. I. Salsbury and J. M. House, J. Dyn. Syst., Meas.,Control, 144, 021008 (2022).
13. H. Su, C. Zhou, Y. Cao, S.-H. Yang and Z. Ji, Syst. Sci. Control Eng.,10, 65 (2022).
14. A. J. Wiid, J. D. le Roux and I. K. Craig, Comput.Chem. Eng., 145,107178 (2021).
15. Y. Liu, Y. Chang, F. Wang, D. Niu and L. Zhao, Chem. Eng. Res. Des.,177, 136 (2022).
16. P. Shah, M. Z. Sheriff, M. S. F. Bangi, C. Kravaris, J. S.-I. Kwon, C.Botre and J. Hirota, Chem. Eng. J., 441, 135643 (2022).
17. S. Kurz, H. De Gersem, A. Galetzka, A. Klaedtke, M. Liebsch, D.Loukrezis, S. Russenschuck and M. Schmidt, J. Math. Ind., 12, 1 (2022).
18. D. Lee, A. Jayaraman and J. S. Kwon, PLoS Comput. Biol., 16,e1008472 (2020).
19. L. Ye, Y. Cao and S. Yang, Comput. Chem. Eng., 159, 107662 (2022).
20. L. Ye, Y. Cao and S. Skogestad, The 20th World Congress of the International Federation of Automatic Control, Toulouse, France (2017).
21. H. Manum and S. Skogestad, J. Process Control, 22, 873 (2012).
22. D. Krishnamoorthy and S. Skogestad, Ind. Eng. Chem. Res., 58,13555 (2019).
23. H. M. Menegaz, J. Y. Ishihara, G. A. Borges and A. N. Vargas, IEEE Trans. Autom. Control, 60, 2583 (2015).
24. D. P. Kingma and J. Ba, arXiv preprint arXiv:1412.6980 (2014).
25. J. Hasenauer, S. Waldherr, M. Doszczak, N. Radde, P. Scheurich and F. Allgöwer, BMC Bioinformatics, 12, 1 (2011).
26. D. Lee, A. Jayaraman and J. S.-I. Kwon, AIChE J., 66, e16925 (2020).
27. A. Narasingam, P. Siddhamshetty and J. S.-I. Kwon, Ind. Eng. Chem.Res., 57, 3977 (2018).
28. D. Xiu, Numerical methods for stochastic computations: A spectral method approach, Princeton University Press (2010).
29. E. A. Wan and R. Van Der Merwe, Proceedings of the IEEE Adaptive Systems for Signal Processing, Communications, and Control
Symposium, 153 (2000).
30. P. Toulis and E. M. Airoldi, The Ann. Statistics, 45, 1694 (2017).
31. J. Duchi, E. Hazan and Y. Singer, J. Machine Learning Res., 12,2121 (2011).
32. T. Tieleman and G. Hinton, RMSProp, COURSERA: Neural Networks for Machine Learning, Technical report (2012).
33. D. Saad, Online Learning, 5, 6 (1998).
34. K. C. Kiwiel, Math. Programming, 90, 1 (2001).
35. H. Lutkepohl, Handbook of Matrices, John Wiley & Sons, New York (1997).
36. J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings and M. Diehl,Mat. Programming Comput., 11, 1 (2019).
37. B. Chachuat, B. Srinivasan and D. Bonvin, Comput. Chem. Eng.,33, 1557 (2009).
38. B. Srinivasan, S. Palanki and D. Bonvin, Comput. Chem. Eng., 27,1 (2003).
39. L. T. Biegler and V. M. Zavala, Comput. Chem. Eng., 33, 575 (2009).
40. L. Ye and S. Skogestad, Comput. Chem. Eng., 117, 451 (2018).
41. L. Ye, F. Shen and H. Guan, J. Process Control, 113, 1 (2022).
42. C. Welz, B. Srinivasan and D. Bonvin, Barcelona, Spain, 1586 (2004).
43. L. Ye, Y. Cao, X. Yuan and Z. Song, IEEE Trans. Ind. Electron., 64,4662 (2017).