Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
옷걸이 모양 다이 내의 비뉴튼 유체 흐름에 대한 2차원 모델과 3차원 모델의 비교
Comparison of 2-Dimensional Model with 3-Dimensional Model of Non-Newtonian Fluid Flow in a Coat-Hanger Die
HWAHAK KONGHAK, June 1995, 33(3), 310-317(8), NONE
Download PDF
Abstract
옷걸이 모양 다이 내의 멱수 법칙 유체의 흐름 해석을 위한 2차원 및 3차원 모델을 세우고 이들에 대하여 유한 요소법을 사용한 컴퓨터 코드를 작성하여 2차원 모델과 3차원 모델을 비교하였다. 1차원적 흐름 모델에 따라 유도된 설계식을 이용하여 옷걸이 모양 다이를 구성하였고, 이 다이에 대하여 2차원 및 3차원 모사를 수행하였다. 두 모델로부터 얻은 유량 분포, 압력 분포, 흐름선(streamlines), 경로선(pathlines), 압력 손실량 등을 비교하여 3차원 모사 결과를 기준으로 했을 때 2차원 모사의 문제점을 지적하였다. 2차원 모사는 매니폴드와 다이의 가장자리에서 흐름을 적절히 해석하지 못하였으며 유량 분포와 압력 손실량에 있어서 3차원 모사와 큰 차이를 나타내었다.
Flow of non-Newtonian fluid following power-law model in coat-hanger die has been studied through 2-dimensional and 3-dimensional model. Finite element codes for numerical simulation were developed for each model. The mathematical model of coat-hanger die was constructed according to the analytic design equation based on one-dimensional flow rate distributions, pressure distributions, streamlines, and pathlines were calculated for comparison between two models. The validity of the two-dimensional analysis was investigated based on the three-dimensional analysis. The two- dimensional model was found to be inadequate in regions of the manifold and the die side wall. There was a significant difference in the flow rate distribution and the total pressure drop between two models.
References
Carley JF, J. Appl. Phys., 25, 1118 (1954)
Carley JF, Mod. Plast., 33, 127 (1956)
Pearson JRA, Trans. J. Plast. Inst., 32, 239 (1964)
Mckelvey JM, Ito K, Polym. Eng. Sci., 11, 258 (1971)
Matsubara Y, Polym. Eng. Sci., 20, 212 (1980)
Klein I, Klein R, SPE J., 29, 33 (1973)
Chung CI, Lohkamp DT, Mod. Plast., 52, 52 (1976)
Tadmor Z, Gogos CG, "Principles of Polymer Processing," John Wiley, New York (1979)
Matsubara Y, Polym. Eng. Sci., 19, 169 (1979)
Matsubara Y, Polym. Eng. Sci., 20, 716 (1980)
Matsubara Y, Polym. Eng. Sci., 23, 17 (1983)
Winter HH, Fritz HG, Polym. Eng. Sci., 26, 543 (1986)
Liu TJ, hong CN, Chen KC, Polym. Eng. Sci., 28, 1517 (1988)
Lee KY, Liu TJ, Polym. Eng. Sci., 29, 1066 (1989)
Tadmor Z, Broyer E, Gutfinger C, Polym. Eng. Sci., 14, 660 (1974)
Gutfinger C, Broyer E, Tadmor Z, AAPG Bull., 15, 383 (1975)
Vergnes B, Saillard P, Agassant JF, Polym. Eng. Sci., 24, 980 (1984)
Arpin B, Lafleur PG, Vergnes B, Polym. Eng. Sci., 32, 206 (1992)
Booy ML, Polym. Eng. Sci., 22, 432 (1982)
Vrahopoulou EP, Chem. Eng. Sci., 46, 629 (1991)
Wang Y, Polym. Eng. Sci., 31, 204 (1991)
Wang Y, Int. Polym. Proc., 6, 311 (1991)
Huang CC, Tsay SY, Wang Y, Polym. Eng. Sci., 33, 709 (1993)
Liu TJ, Ind. Eng. Chem. Fundam., 22, 183 (1983)
Zinenkiewicz OC, Taylor RL, "The Finite Element Methods," 4th ed., McGraw-Hill, London (1989)
Hood P, Int. J. Num. Meth. Eng., 10, 379 (1976)
Carley JF, Mod. Plast., 33, 127 (1956)
Pearson JRA, Trans. J. Plast. Inst., 32, 239 (1964)
Mckelvey JM, Ito K, Polym. Eng. Sci., 11, 258 (1971)
Matsubara Y, Polym. Eng. Sci., 20, 212 (1980)
Klein I, Klein R, SPE J., 29, 33 (1973)
Chung CI, Lohkamp DT, Mod. Plast., 52, 52 (1976)
Tadmor Z, Gogos CG, "Principles of Polymer Processing," John Wiley, New York (1979)
Matsubara Y, Polym. Eng. Sci., 19, 169 (1979)
Matsubara Y, Polym. Eng. Sci., 20, 716 (1980)
Matsubara Y, Polym. Eng. Sci., 23, 17 (1983)
Winter HH, Fritz HG, Polym. Eng. Sci., 26, 543 (1986)
Liu TJ, hong CN, Chen KC, Polym. Eng. Sci., 28, 1517 (1988)
Lee KY, Liu TJ, Polym. Eng. Sci., 29, 1066 (1989)
Tadmor Z, Broyer E, Gutfinger C, Polym. Eng. Sci., 14, 660 (1974)
Gutfinger C, Broyer E, Tadmor Z, AAPG Bull., 15, 383 (1975)
Vergnes B, Saillard P, Agassant JF, Polym. Eng. Sci., 24, 980 (1984)
Arpin B, Lafleur PG, Vergnes B, Polym. Eng. Sci., 32, 206 (1992)
Booy ML, Polym. Eng. Sci., 22, 432 (1982)
Vrahopoulou EP, Chem. Eng. Sci., 46, 629 (1991)
Wang Y, Polym. Eng. Sci., 31, 204 (1991)
Wang Y, Int. Polym. Proc., 6, 311 (1991)
Huang CC, Tsay SY, Wang Y, Polym. Eng. Sci., 33, 709 (1993)
Liu TJ, Ind. Eng. Chem. Fundam., 22, 183 (1983)
Zinenkiewicz OC, Taylor RL, "The Finite Element Methods," 4th ed., McGraw-Hill, London (1989)
Hood P, Int. J. Num. Meth. Eng., 10, 379 (1976)