Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
합성방법에 따른 K2Ti4O9 섬유의 형상변화
Effects of Synthetic Methods on the Morphological Changes of K2Ti4O9 Fiber
HWAHAK KONGHAK, August 1996, 34(4), 477-481(5), NONE
Download PDF
Abstract
용융법과 졸겔법을 이용하여 4티탄산칼륨(K2Ti4O9)을 합성하여 형상 및 표면적 변화를 연구하엿다. 용융법으로 생성한 K2Ti4O9보다 졸겔법의 경우 더 길고 얇은 섬유상인 길이 7-10μm, L/D가 40-50의 K2Ti4O9가 성장되었다. 초임계 건조를 적용한 졸겔법으로부터 초임계 건조 후 섬유상의 중간체가 형성이 되었고 이를 다시 소성시킴에 따라 길이 0.5-1μm, L/D는 10-300의 K2Ti4O9 섬유를 얻을 수 있었다. 표면적은 초임계 건조를 행한 졸겔법의 경우 가장 큰 20-25m2/g를 나타내었다. 형성된 K2Ti4O9의 형태와 표면적은 합성방법과 조건에 영향을 받는 것으로 나타났다.
Potassium tetratitanate(K2Ti4O9) was synthesized by melting method and sol-gel method. Changes of morphology and surface area of K2Ti4O9 were also investigated. In sol- gel method, K2Ti4O9 fiber was formed with 7-10 μm in length and L/D was 40-50 which is higher than that of melting method. Intermediate phase was obtained by sol-gel method adopted with supercritical drying. After calcination of the intermediate phase, K2Ti4O9 fibers were formed with 0.5-1 μm in length and L/D was 10-300, which is thinner and shorter than that of melting and sol-gel method. By using sol-gel method adopted supercritical drying, the highest surface area of 20-25 m2/g was obtained. The morphology and surface area of K2Ti4O9 were affected by synthetic methods and conditions.
References
Jung KT, Shul YG, Hong WM, J. Chem. Ind. Tech., 8(3), 33 (1990)
Fujiki Y, Izumi F, Yogyo-Kyokai-Shi, 85(4), 155 (1977)
Fujiki Y, Komatsu Y, Ohta N, Chem. Lett., 26, 1023 (1980)
Muto F, Nakagomi T, Taks S, Yogyo-Kyokai-Shi, 86(19), 443 (1978)
Komatsu Y, Fujiki Y, Sasaki T, Japan Analist Sect E31, E225 (1982)
Wenzel J, J. Non-Cryst. Solids, 73, 693 (1985)
Dislieh H, Angew. Chem.-Int. Edit., 10, 363 (1971)
Yoldas BE, J. Mater. Sci., 21, 1087 (1986)
Param HT, Arion JH, Kelvin DL, J. Mater. Lett., 3(9), 363 (1986)
Lee CT, Kim SW, Lee JS, Kim YM, Kwon KT, J. Korean Ind. Eng. Chem., 5(3), 478 (1994)
Jung KT, Shul YG, J. of the Eng. Research Institute, Yonsei Univ., 26(41), 2 (1994)
Chi CH, Sand LB, Nature, 304, 255 (1983)
정경택, 문제권, 설용건, 오원진, '95 추계 화학공학회 발표, 1293 (1995)
Fujiki Y, Izumi F, Yogyo-Kyokai-Shi, 85(4), 155 (1977)
Fujiki Y, Komatsu Y, Ohta N, Chem. Lett., 26, 1023 (1980)
Muto F, Nakagomi T, Taks S, Yogyo-Kyokai-Shi, 86(19), 443 (1978)
Komatsu Y, Fujiki Y, Sasaki T, Japan Analist Sect E31, E225 (1982)
Wenzel J, J. Non-Cryst. Solids, 73, 693 (1985)
Dislieh H, Angew. Chem.-Int. Edit., 10, 363 (1971)
Yoldas BE, J. Mater. Sci., 21, 1087 (1986)
Param HT, Arion JH, Kelvin DL, J. Mater. Lett., 3(9), 363 (1986)
Lee CT, Kim SW, Lee JS, Kim YM, Kwon KT, J. Korean Ind. Eng. Chem., 5(3), 478 (1994)
Jung KT, Shul YG, J. of the Eng. Research Institute, Yonsei Univ., 26(41), 2 (1994)
Chi CH, Sand LB, Nature, 304, 255 (1983)
정경택, 문제권, 설용건, 오원진, '95 추계 화학공학회 발표, 1293 (1995)