Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 20, 2004
Accepted November 19, 2004
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
연소기체로부터 이산화탄소 회수를 위한 막 분리 공정의 최적화
Optimization of Membrane Separation System for Carbon Dioxide Recovery from Combustion Gases
충남대학교 화학공학과, 305-764 대전시 유성구 궁동 220 1한국화학연구원 화학공정연구센터, 305-600 대전시 유성구 장동 100
Department of Chemical Engineering, Chungnam National University, 220, Gung-dong, Yuseong-gu, Daejeon 305-764, Korea 1Chemical Process and Engineering Center, KRICT, 100, Jang-dong, Yuseong-gu, Daejeon 305-600, Korea
mwhan@cnu.ac.kr
Korean Chemical Engineering Research, April 2005, 43(2), 222-229(8), NONE Epub 9 May 2005
Download PDF
Abstract
공기 중의 이산화탄소가 10% 함유된 연소가스를 5단의 다단 농축 막분리 시스템을 이용하여 분리하는 것을 Aspen plus와 Excel을 이용하여 모사하였다. 분리된 이산화탄소의 농도는 99% 이상, 이산화탄소 제거 효율을 90%이상으로 하였다. 이때 최적화 변수를 각 단의 압력, 각 단에서의 잔여물 농도로 하였고 각 단의 막 면적의 합과 막 분리시스템 의 장치비와 운전비를 고려한 목적함수를 제안하여 최적화를 행하였다. 최적화 결과, 기존 설계에 비해 막 면적 및 총괄 소요비용을 절감할 수 있었으며, 이를 바탕으로 다단농축 막분리 시스템의 설계지침을 얻었다.
Five stage enriching membrane system for separating combustion gas (air 90%, CO2 10%) was proposed and simulated by using Aspen plus and Excel. The system recovers 90% CO2 of the combustion gas and the purity of CO2 recovered was more than 99%. Optimization yields a reduction in membrane area as well as operating and capital cost. Retentate concentration and permeate pressure of each stage were chosen as optimization variables. By analyzing the optimization results, we derived several design guide lines for the enriching membrane system.
References
Hwang ST, Kammermeyer KL, Membranes in Separations, Wiley-Interscience, New York, 324-338 (1975)
Spillmann RW, Chem. Eng. Prog., 85(1), 41 (1989)
Babcock RE, Spillmann RW, Goddin CS, Cooley TE, Energy Progress, 8, 135 (1988)
Qju M, Hwang ST, Kao YK, Ind. Eng. Chem. Res., 28(11), 1670 (1989)
Lababidi H, Alenezi GA, Ettouney HM, J. Membr. Sci., 112(2), 185 (1996)
Qi RH, Henson MA, Comput. Chem. Eng., 24(12), 2719 (2000)
Aspen Plus User Guide, Version 12.1, Aspen Technology, Inc. (2004)
Spillmann RW, Chem. Eng. Prog., 85(1), 41 (1989)
Babcock RE, Spillmann RW, Goddin CS, Cooley TE, Energy Progress, 8, 135 (1988)
Qju M, Hwang ST, Kao YK, Ind. Eng. Chem. Res., 28(11), 1670 (1989)
Lababidi H, Alenezi GA, Ettouney HM, J. Membr. Sci., 112(2), 185 (1996)
Qi RH, Henson MA, Comput. Chem. Eng., 24(12), 2719 (2000)
Aspen Plus User Guide, Version 12.1, Aspen Technology, Inc. (2004)