ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 10, 2008
Accepted January 18, 2009
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

혼합금속산화물에 담지된 Pd-Rh의 허니컴 촉매에서 NO와 N2O의 동시 환원 - H2 또는 CO 환원제의 사용

Simultaneous Catalytic Reduction of NO and N2O over Pd-Rh Supported Mixed Metal Oxide Honeycomb Catalysts - Use of H2 or CO as a Reductant

한국에너지기술연구원, 305-343 대전광역시 유성구 장동 71-2
Korea Institute of Energy Research, 71-2 Jang-dong, Yuseong-gu, Daejeon 305-343, Korea
shmoon@kier.re.kr
Korean Chemical Engineering Research, February 2009, 47(1), 96-104(9), NONE Epub 27 February 2009
downloadDownload PDF

Abstract

혼합금속산화물에 담지된 Pd-Rh 허니컴 촉매 상에서 NO와 N2O를 동시에 저감하기 위한 반응 온도를 낮추면서 각각의 반응물에 대한 전환율을 높이기 위하여, 환원제로 수소 또는 일산화탄소 사용에 대해 조사하였다. 각각의 환원제 사용 시, NO와 N2O의 전환율에 대한 반응 조건의 영향을 조사하기 위해 반응온도, 각 환원제와 산소의 농도, NO와 N2O 간의 농도 비율 등을 변화시켰다. 먼저 수소를 환원제로 사용하는 경우, 산소의 부재시 200 oC 미만의 저온에서 50% 이상의 NO와 N2O 전환율을 얻을 수 있었다. 한편, 일산화탄소를 환원제로 사용하는 경우에는 NO와 N2O 전환율이 각각 200 ℃와 300 ℃ 이상에서 증가하기 시작하였다. 그러나, 두 가지 환원제 모두의 경우에서, 반응 가스내에 산소 농도가 증가함에 따라 N2O와 NO 전환율에 감소하였다. 결과적으로 일산화탄소 환원제에 비해, 수소 환원제가 상대적으로 저온에서 NO와 N2O를 동시에 저감할 수 있으며, 산소 농도에 의한 영향을 덜 받는 것으로 나타났다. 반면, 반응물내 N2O와 NO 농도비에 의한 NO와 N2O 전환율의 영향은 환원제의 종류에 크게 영향을 받지 않는 것으로 관찰되었다. 저온에서 NO와 N2O를 동시에 저감시키기 위해서는 산소 분위기보다는 수소 분위기에서 촉매를 전처리 하는 것이 보다 효과적인 것으로 나타났다.
In order to lower a reaction temperature with high conversions for simultaneous catalytic reduction of NO and N2O over Pd-Rh supported mixed metal oxide honeycomb catalysts, H2 or CO was utilized as a reductant. When using the reductants, the effects of reaction conditions were examined in NO and N2O conversions, where reaction temperatures, concentrations of the reductants and oxygen and the concentration ratio of N2O to NO were varied. In using H2 reductant, larger than 50% of NO and N2O conversions was observed at the temperatures below 200 ℃ in absence of O2. In using CO reductant, NO and N2O conversions increased from the temperatures higher than 200 ℃ and 300 ℃, respectively. However, in use of both reductants, NO and N2O conversions decreased with increasing oxygen concentration. As a result, H2 reductant could reduce simultaneously NO and N2O at relatively lower reaction temperature than CO. Also, NO and N2O conversions were less influenced by using H2 reductant than CO one. Concentration ratio between NO and N2O did not affect their conversions regardless the type of reductants. Pretreatment of the catalyst in H2 was more effective in simultaneous reduction of NO and N2O at low reaction temperature than that in O2.

References

Cho SS, Choo ST, Seo MH, Kim JM, “Simultaneous Removal System for Nitrogen Oxides (NOx, N2O) Using Natural Zeolite Honeycomb Catalysts,” Korean Society of Environmental Engineers 2006 Conference, 884-885(2006)
Lee HJ, Chang KS, Park YS, Woo JW, Appl. Chem., 10(1), 244 (2006)
Coq B, Mauvezin M, Delahay G, Butet JB, Kieger S, Appl. Catal. B: Environ., 27(3), 193 (2000)
Bosch H, Janssen F, Catalysis Today, 2, 369 (1988)
Forzatti P, Lietti L, Heterogeneous Chemistry Reviews, 3, 33 (1996)
Long RQ, Yang RT, J. Am. Chem. Soc., 121(23), 5595 (1999)
Pieterse JAZ, Booneveld S, Appl. Catal. B: Environ., 73(3-4), 327 (2007)
Qi GS, Yang RT, Rinaldi FC, J. Catal., 237(2), 381 (2006)
Costa CN, Efstathiou AM, Appl. Catal. B: Environ., 72(3-4), 240 (2007)
Nanba I, Kohno C, Masukawa S, Uchisawa J, Nakayama N, Obuchi A, Appl. Catal. B: Environ., 46(2), 353 (2003)
Yokota K, Fukui M, Tanaka T, Applied Surface Science, 121, 273 (1997)
Kogel M, Monnig R, Schwieger W, Tissler A, Turek T, J. Catal., 182(2), 470 (1999)
Perez-Ramirez J, Kapteijn F, Appl. Catal. B: Environ., 47(3), 177 (2004)
Guzman-Vargas A, Delahay G, Coq B, Appl. Catal. B: Environ., 42(4), 369 (2003)
Macleod N, Lambert RM, Appl. Catal. B: Environ., 35(4), 269 (2002)
Holles JH, Switzer MA, Davis RJ, J. Catal., 190(2), 247 (2000)
Wen B, Fuel, 81, 1841 (2002)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로