Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 5, 2009
Accepted November 28, 2009
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
아조염료 Reactive Black 5 폐수의 촉매습식산화
Catalytic Wet Oxidation of Azo Dye Reactive Black 5
건국대학교 화학공학과, 143-701 서울시 광진구 화양동 1 1한국에너지기술연구원 수소에너지연구센터, 305-343 대전시 유성구 장동 71-2
Department of Chemical Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea 1Hydrogen Energy Research Center, Korea Institute of Energy Research, 71-2 Jang-dong, Yuseong-gu, Daejeon 305-343, Korea
issuh@konkuk.ac.kr
Korean Chemical Engineering Research, April 2010, 48(2), 259-267(9), NONE Epub 3 May 2010
Download PDF
Abstract
불균일 촉매 CuO를 이용한 반응성 아조계 염료 Reactive Black 5(RB5) 폐수의 촉매습식산화에서 반응온도(190~230 ℃) 및 촉매농도(0.00~0.20 g/l)가 폐수의 색도 및 총 유기탄소 TOC 제거에 미치는 영향을 조사하였다. 폐수의 색도는 분광광도계를 사용하여 측정하였고, 습식산화속도는 TOC를 이용하여 산출하였다. 열분해 조건(230 ℃, 120 min)에서 폐수의 색도는 약 90%까지 제거되었지만 TOC는 제거되지 않았다. RB5 폐수 촉매 습식산화에서의 폐수의 색도 및 TOC 제거속도는 반응온도 및 촉매농도를 증가시킴에 따라 증가하였다. 촉매의 영향은 0.01 g CuO/l에서 이미 상당히 크게 나타났으며 0.05 g CuO/l 이상에서의 촉매농도 증가에 따른 효과는 작았다. 폐수 색도의 초기변화는 색도에 대한 1차 반응속도론으로 나타낼 수 있었으며, TOC 변화는 폐수 TOC를 쉽게 산화되는 TOC와 난분해성 TOC로 구분한 global 모델로 묘사할 수 있었다. 반응온도의 폐수 색도 및 TOC 제거속도에 미치는 영향은 Arrhenius 상관 관계식으로 묘사할 수 있었다. RB5 폐수의 열분해, 습식산화 및 0.20 g CuO/l의 촉매농도를 사용한 촉매습식산화 조건에서의 색도 제거반응의 활성화에너지는 각각 108.4, 78.3 및 74.1 kJ/mol의 값을 나타내었다. RB5 폐수 촉매습식산화에서의 TOC 제거반응에서 산화 최종산물로의 전환에 대한 난분해성 중간산물로의 전환 비는 페놀 습식산화에 비하여 상대적으로 높았다.
The catalytic wet oxidations of the wastewater containing azo dye Reactive Black 5(RB5) with heterogeneous catalyst of CuO have been carried out to investigate the effects of temperature(190~230 ℃) and catalyst concentration(0.00~0.20 g/l) on the removals of colour and total organic carbon TOC. The wastewater colour was measured with spectrophotometer, and the oxidation rate was estimated with TOC. About 90% of colour was removed during 120 min in thermal degradation of the RB5 wastewater at 230 ℃, while TOC was not removed at all. As increasing reaction temperature and catalyst concentration, the removal rates of colour and TOC increased in the catalytic wet oxidations of RB5 wastewater. The effects of catalyst were already considerable even at 0.01 g CuO/l, while the removal rates of colour and TOC increased negligibly with increasing the catalyst concentration above 0.05 g CuO/l. The initial destruction_x000D_
rates of the wastewater colour have shown the first-order kinetics with respect to the wastewater colour. TOC changes during catalytic wet oxidations have been well described with the global model, in which the easily degradable TOC was distinguished from non-degradable TOC of the wastewater. The impacts of reaction temperature on the destruction rate of the wastewater colour and TOC could be described with Arrhenius relationship. Activation energies of the colour removal reaction in thermal degradation, wet oxidation, and catalytic wet oxidation(0.20 g CuO/l) of the RB5 wastewater were 108.4, 78.3 and 74.1 kJ/mol, respectively. The selectivity of wastewater TOC into the non-degradable intermediates relative to the end products in the catalytic wet oxidations of RB5 wastewater was higher compared to that in phenol wet oxidations.
References
Hao OJ, Kim H, Chiang PC, Critical Reviews in Environ. Sci. Technol., 30, 449 (2000)
Kang TH, Oh BS, Park SJ, Kang MG, Kim JS, Kang JW, J. Korean Society on Water Quality, 21, 267 (2005)
Lucas MS, Peres JA, Dyes and Pigments, 71, 236 (2006)
Kusvuran E, Irmak S, Yavuz HI, Samil A, Erbatur O, J. Hazard. Mater., B119, 109 (2005)
Sahel K, Perol N, Chermette H, Bordes C, Derriche Z, Guillard C, Appl. Catal. B: Environ., 77(1-2), 100 (2007)
Seo IS, Yoon WR, Chem. Ind. Technol., 14(6), 566 (1996)
Mishra VS, Mahajani VV, Joshi JB, Ind. Eng. Chem. Res., 34(1), 2 (1995)
Rivas FJ, Kolaczkowski ST, Beltran FJ, McLurgh DB, Chem. Eng. Sci., 53(14), 2575 (1998)
Ryu SH, Yoon WL, Suh IS, J. Korean Ind. Eng. Chem., 20(5), 486 (2009)
Luck F, Catal. Today, 53(1), 81 (1999)
Imamura S, Ind. Eng. Chem. Res., 38(5), 1743 (1999)
Suh IS, Ryu SH, Yoon WL, Korean Chem. Eng. Res., 47(3), 292 (2009)
Choi HJ, Lee SH, Yu YH, Yoon WL, Suh IS, Korean J. Biotechnol. Bioeng., 22, 244 (2007)
Kwon SS, Moon HM, Lee YH, Yu YH, Yoon WL, Suh IS, Korean J. Biotechnol. Bioeng., 23, 245 (2008)
Li L, Chen P, Gloyna EF, AIChE J., 37, 1687 (1991)
Kang TH, Oh BS, Park SJ, Kang MG, Kim JS, Kang JW, J. Korean Society on Water Quality, 21, 267 (2005)
Lucas MS, Peres JA, Dyes and Pigments, 71, 236 (2006)
Kusvuran E, Irmak S, Yavuz HI, Samil A, Erbatur O, J. Hazard. Mater., B119, 109 (2005)
Sahel K, Perol N, Chermette H, Bordes C, Derriche Z, Guillard C, Appl. Catal. B: Environ., 77(1-2), 100 (2007)
Seo IS, Yoon WR, Chem. Ind. Technol., 14(6), 566 (1996)
Mishra VS, Mahajani VV, Joshi JB, Ind. Eng. Chem. Res., 34(1), 2 (1995)
Rivas FJ, Kolaczkowski ST, Beltran FJ, McLurgh DB, Chem. Eng. Sci., 53(14), 2575 (1998)
Ryu SH, Yoon WL, Suh IS, J. Korean Ind. Eng. Chem., 20(5), 486 (2009)
Luck F, Catal. Today, 53(1), 81 (1999)
Imamura S, Ind. Eng. Chem. Res., 38(5), 1743 (1999)
Suh IS, Ryu SH, Yoon WL, Korean Chem. Eng. Res., 47(3), 292 (2009)
Choi HJ, Lee SH, Yu YH, Yoon WL, Suh IS, Korean J. Biotechnol. Bioeng., 22, 244 (2007)
Kwon SS, Moon HM, Lee YH, Yu YH, Yoon WL, Suh IS, Korean J. Biotechnol. Bioeng., 23, 245 (2008)
Li L, Chen P, Gloyna EF, AIChE J., 37, 1687 (1991)