Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 18, 2010
Accepted April 10, 2010
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
고점도 유체 내에서 부양하는 거품의 종말속도, 항력계수, 형태 분석
Analysis of Terminal Velocity, Drag Coefficient and Shape of Bubble Rising in High Viscous Fluid
서울시립대학교 화학공학과, 130-743 서울시 동대문구 전농동 90
Department of Chemical Engineering, University of Seoul, 90 Jeonnong-dong, Dongdaemun-gu, Seoul 130-743, Korea
jhkimad@uos.ac.kr
Korean Chemical Engineering Research, August 2010, 48(4), 462-469(8), NONE Epub 8 September 2010
Download PDF
Abstract
기체와 액체가 만나는 2상 공정들은 화학공학, 생명화학공학, 환경공학, 식품공학 등에 두루 존재한다. 위와 같은 공정의 최적화를 위해서는 거품의 움직임과 형태에 대한 정확한 파악이 필요하다. 액체 내부에서 거품의 움직임은 액체의 밀도, 점도, 표면장력과 거품의 크기와 속도에 영향을 받는다. 본 논문에서는 고점도 실리콘 오일 내부에서의 거품의 움직임과 형태를 관찰하였다. 또한 국외 논문 및 저서에서 정립된 거품의 에너지 수지 식, 항력계수와 변형계수를 이용하여 거품의 종말속도, 항력계수, 변형계수, 형태를 예측해 보고 이를 실험결과와 비교해 보았다. 실험 결과 거품의 속도는 점도가 낮을 경우가 더 빨랐고, 거품의 항력계수는 점도가 클 때 더 컸다. 거품의 형태는 점도가 클 때 덜찌그러진(구형에 가까운) 형태였다. 실험결과와 국외 논문 및 저서에서 정립된 항력계수와 변형계수를 이용한 예측결과를 비교해 본 결과 Batchelor가 제시한 이론이 가장 정확한 예측을 하는 것으로 나타났다. Batchelor가 제시한 거품의 에너지 수지식, 항력계수와 변형계수를 사용하여 예측한 거품의 2차원 측면 형태는 실험에서 관찰된 거품의 2차원 측면 형태와 유사하였다.
Gas-liquid 2 phase processes are usually used in chemical, biochemical, environmental engineering and food process. For optimizing these processes, understanding bubble’s precise movement and shape are needed. Bubble’s movement and shape are effected by liquid’s properties-viscosity, surface tension and bubble’s properties-size, velocity. This paper deals with experimental data of bubble’s movement and shape in high viscous silicone oil. Also, drag coefficient and deformation factor given by other researcher’s papers and books are used to predicting and comparing bubble’s terminal velocity, drag coefficient, deformation factor and shape with experimental value. Experimental data show that bubble moves faster when it moves in lower viscous silicone oil and it’s drag coefficient is bigger when it moves in high viscous silicone oil. Bubble’s shape is close to sphere when moving in high viscous silicone. Formulas proposed by Batchelor expect most accurate prediction for bubble’s velocity and drag coefficient. Bubble’s 2D shape predicted by Batchelor’s energy balance, drag coefficient and deformation factor show excellent agreement with experimental bubble’s 2D shape.
Keywords
References
Hassan NMS, Khan MMK, Rasul MG, Rackemann DW, “An Experimental Study of Bubble Rise Characteristics in non - Newtonian (Power-Law) Fluids,” 16th Australasian Fluid Mechanics Conference (2007)
Mirzaee E, Rafiee S, Keyhani A, Jom-Eh ZE, Kheiralipour K, Tabatabaeefar A, J. Agric. Technol., 4, 29 (2008)
Sikorski D, Tabuteau H, de Bruyn JR, J. Non-Newton. Fluid Mech., 159(1-3), 10 (2009)
Sunol F, Gonzalez-Cinca R, Colloids Surf., A, In press (2010)
Manor O, Chan DYC, Langmuir, 25(16), 8899 (2009)
Talaia MAR, WASET, 22, 264 (2007)
Bozzano G, Dente M, “Shape and Terminal Velocity of Single Bubble Motion: a Novel Approach,” Comput. Chem. Eng., 25(1), 5712576 (2001)
Bozzano G, Dente M, Chem. Eng. Trans., 17, 567 (2009)
Batchelor, GK, An Introduction to Fluid-Dynamics, Cambridge University Press, Cambridge (1970)
Moore DW, J. Fluid. Mech., 23, 749 (1965)
Wu M, Gharib M, Phys. Fluids. A, 14 (2002)
Mirzaee E, Rafiee S, Keyhani A, Jom-Eh ZE, Kheiralipour K, Tabatabaeefar A, J. Agric. Technol., 4, 29 (2008)
Sikorski D, Tabuteau H, de Bruyn JR, J. Non-Newton. Fluid Mech., 159(1-3), 10 (2009)
Sunol F, Gonzalez-Cinca R, Colloids Surf., A, In press (2010)
Manor O, Chan DYC, Langmuir, 25(16), 8899 (2009)
Talaia MAR, WASET, 22, 264 (2007)
Bozzano G, Dente M, “Shape and Terminal Velocity of Single Bubble Motion: a Novel Approach,” Comput. Chem. Eng., 25(1), 5712576 (2001)
Bozzano G, Dente M, Chem. Eng. Trans., 17, 567 (2009)
Batchelor, GK, An Introduction to Fluid-Dynamics, Cambridge University Press, Cambridge (1970)
Moore DW, J. Fluid. Mech., 23, 749 (1965)
Wu M, Gharib M, Phys. Fluids. A, 14 (2002)