Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 25, 2011
Accepted April 18, 2011
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
주석-니켈 나노입자 복합체의 리튬 이차전지 음전극 특성
Anode Properties of Sn-Ni Nanoparticle Composites for Rechargeable Lithium Batteries
한국전자통신연구원 융합부품소재부문 전력제어소자팀, 305-700 대전광역시 유성구 가정로 218
Research Team of Power Control Devices, Electronics and Telecommunications Research Institute (ETRI), 218 Gajung-ro, Yuseong-gu, Daejeon 305-700, Korea
kwang@etri.re.kr
Korean Chemical Engineering Research, December 2011, 49(6), 846-850(5), NONE Epub 28 November 2011
Download PDF
Abstract
주석과 니켈 나노입자를 함량별로 혼합하여 습식법으로 리튬 이차전지용 복합체 음전극을 제조하고 그 물성과 전기화학적 특성을 조사하였다. 이 음전극은 초기 방전시 최대 700 mAh g^(-1)의 우수한 방전용량을 나타내었지만 사이클 특성은 심각한 열화를 보였다. 이것은 나노입자간 단순혼합만으로는 전극판의 기공성과 Ni 성분이 충방전에 따르는 Sn 성분의 팽창/수축에 대한 기계적 완충제 역할이 충분하지 않았기 때문이며, 차후 이를 보완하는 나노구조체 Sn-Ni 음전극의 설계와 시험이 필요하다.
Nanocomposite anodes for rechargeable lithium battery are prepared by mixing tin and nickel nanoparticles via wet method and their electrochemical properties are examined. The Sn-Ni nanocomposite anode shows a maximum discharge capacity of 700 mAh g^(-1) at the first cycle but very poor cycle performance. This means that the electrode porosity and the Ni component formed by the simple mixing of nanoparticles no longer play the role of buffering the volume expansion/contraction of Sn component during charge-discharge. To solve the cycle performance problem, a novel nanostructured Sn-Ni anode should be designed and tested.
References
Winter M, Besenhard JO, Electrochim. Acta, 45(1-2), 31 (1999)
Crosnier O, Brousse T, Devaux X, Fragnaud P, Schleich DM, J. Power Sources, 94(2), 169 (2001)
Mukaibo H, Sumi T, Yokoshima T, Momma T, Osaka T, Electrochem. Solid State Lett., 6(10), A218 (2003)
Mukaibo H, Momma T, Mohamedi M, Osaka T, J. Electrochem. Soc., 152(3), A560 (2005)
Mukaibo H, Momma T, Osaka T, J. Power Sources, 146(1-2), 457 (2005)
Hassoun J, Panero S, Scrosati B, J. Power Sources, 160(2), 1336 (2006)
Ehrlich GM, Durand C, Chen X, Hugener TA, Spiess F, Suib SL, J. Electrochem. Soc., 147(3), 886 (2000)
Lee HY, Jang SW, Lee SM, Lee SJ, Baik HK, J. Power Sources, 112(1), 8 (2002)
Amadei I, Panero S, Scrosati B, Cocco G, Schiffini L, J. Power Sources, 143(1-2), 227 (2005)
Cheng XQ, Shi PF, J. Alloys Compounds., 391, 241 (2005)
Dong QF, Wu CZ, Jin MG, Huang ZC, Zheng MS, You JK, Lin ZG, Solid State Ion., 167(1-2), 49 (2004)
Nishikawa K, Dokko K, Kinoshita K, Woo SW, Kanamura K, J. Power Sources, 189(1), 726 (2009)
Woo SW, Okada N, Kotobuki M, Sasajima K, Munakata H, Kajihara K, Kanamura K, Electrochim. Acta, 55(27), 8030 (2010)
Sivashanmugam A, Kumar TP, Renganathan NG, Gopukumar S, Wohlfahrt-Mehrens M, Garche J, J. Power Sources, 144(1), 197 (2005)
Wang J, Raistrick ID, Huggins RA, J. Electrochem. Soc., 133, 457 (1986)
Whittingham MS, Dalton Trans., 5424 (2008)
Bruce PG, Scrosati B, Tarascon JM, Angew. Chem. Int. Ed., 47, 2930 (2008)
Kim MG, Cho J, Adv. Funct. Mater., 19(10), 1497 (2009)
Deng D, Kim MG, Lee JY, Cho J, Energy Environ. Sci., 2, 818 (2009)
Scrosati B, Garche J, J. Power Sources, 195(9), 2419 (2010)
Zhang WJ, J. Power Sources, 196(1), 13 (2011)
Liu R, Duay J, Lee SB, Chem. Commun., 47, 1384 (2011)
Crosnier O, Brousse T, Devaux X, Fragnaud P, Schleich DM, J. Power Sources, 94(2), 169 (2001)
Mukaibo H, Sumi T, Yokoshima T, Momma T, Osaka T, Electrochem. Solid State Lett., 6(10), A218 (2003)
Mukaibo H, Momma T, Mohamedi M, Osaka T, J. Electrochem. Soc., 152(3), A560 (2005)
Mukaibo H, Momma T, Osaka T, J. Power Sources, 146(1-2), 457 (2005)
Hassoun J, Panero S, Scrosati B, J. Power Sources, 160(2), 1336 (2006)
Ehrlich GM, Durand C, Chen X, Hugener TA, Spiess F, Suib SL, J. Electrochem. Soc., 147(3), 886 (2000)
Lee HY, Jang SW, Lee SM, Lee SJ, Baik HK, J. Power Sources, 112(1), 8 (2002)
Amadei I, Panero S, Scrosati B, Cocco G, Schiffini L, J. Power Sources, 143(1-2), 227 (2005)
Cheng XQ, Shi PF, J. Alloys Compounds., 391, 241 (2005)
Dong QF, Wu CZ, Jin MG, Huang ZC, Zheng MS, You JK, Lin ZG, Solid State Ion., 167(1-2), 49 (2004)
Nishikawa K, Dokko K, Kinoshita K, Woo SW, Kanamura K, J. Power Sources, 189(1), 726 (2009)
Woo SW, Okada N, Kotobuki M, Sasajima K, Munakata H, Kajihara K, Kanamura K, Electrochim. Acta, 55(27), 8030 (2010)
Sivashanmugam A, Kumar TP, Renganathan NG, Gopukumar S, Wohlfahrt-Mehrens M, Garche J, J. Power Sources, 144(1), 197 (2005)
Wang J, Raistrick ID, Huggins RA, J. Electrochem. Soc., 133, 457 (1986)
Whittingham MS, Dalton Trans., 5424 (2008)
Bruce PG, Scrosati B, Tarascon JM, Angew. Chem. Int. Ed., 47, 2930 (2008)
Kim MG, Cho J, Adv. Funct. Mater., 19(10), 1497 (2009)
Deng D, Kim MG, Lee JY, Cho J, Energy Environ. Sci., 2, 818 (2009)
Scrosati B, Garche J, J. Power Sources, 195(9), 2419 (2010)
Zhang WJ, J. Power Sources, 196(1), 13 (2011)
Liu R, Duay J, Lee SB, Chem. Commun., 47, 1384 (2011)