Overall
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 30, 2024
Revised September 2, 2024
Accepted September 4, 2024
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Most Cited
유채박-기반 접착제로 제조한 중밀도섬유판의 물성 평가 및 상용화를 위한 최적 제조조건의 확립
Evaluating the Properties of Medium–density Fiberboard Made with a Rapeseed Flour-based Adhesive Resin and Establish of the Optimal Fabricating Conditions for its Commercialization
Abstract
본 연구는 착유 부산물인 유채박을 이용하여 조제한 접착제를 다양한 조건으로 중밀도섬유판(MDF) 제조에 적용한
후, 물성 및 포름알데히드 방출량의 평가를 통하여 최적 제조조건의 도출 및 이에 대한 상용화 가능성을 확인하기 위
하여 수행하였다. 접착제는 선행연구 결과를 토대로 유채박의 알칼리/산 가수분해물과 phenol-formaldehyde(PF)
prepolymer를 이용하여 조제하였다. PF prepolymer 함량(20, 30, 40 wt%)을 조절한 유채박-기반 접착제를 각 함지율
(5, 7, 9%) 및 목표 밀도(0.5, 0.7 g/cm3)에 따라 MDF 제조에 적용하였다. 이 조건에서 제조한 MDF의 물성을 측정한
결과, 접착제 내의 PF prepolymer 함량이 미치는 영향이 가장 컸으며, 다음으로 밀도, 함지율 순으로 분석되었다. 이
측정치는 현재 MDF 생산에 사용되고 있는 요소수지 접착제를 적용하여 제조한 MDF의 휨강도, 박리강도, 흡수두께
팽창율, 포름알데히드 방출량보다 우수하였다. 실험인자별 MDF의 물성 및 포름알데히드 방산량 결과를 토대로 최적
제조조건은 0.7 g/cm3의 목표밀도, 5%의 함지율, 접착제 내의 40 wt% PF prepolymer 함량으로 조사되었으며, 흡수두
께 팽창율을 제외하고 국립산림과학원의 중밀도섬유판 및 E0급 포름알데히드 방출량 기준을 모두 만족하는 것으로 조
사되었다. 결과를 종합하면, 유채박-기반 접착제를 이용한 MDF 생산의 상용화 가능성을 확인하였으나, 유채에 대한
바이오리파이너리 공정 적용을 통하여 접착제 제조용 주원료인 유채박을 저렴하게 안정적으로 확보하는 방안의 확립
이 선행되어야 할 것으로 생각한다.
This study was conducted to confirm the potential of adhesive resins formulated with rapeseed flour (RSF),
which is a residue in the production of edible oil, for the manufacture of medium-density fiberboards (MDF). The RSFbased
adhesive resins were formulated with the weight ratio of RSF hydrolyzates (80, 70, 60 wt%) to PF prepolymer(20,
30, 40 wt%), MDF was fabricated in accordance with its resin content and target density using the RSF-based adhesive
resin, and then the physical properties(density, moisture content, bending strength, internal bonding strength and
thickness swelling) and formaldehyde emission of the MDF were measured. The effect of the weight ratio of RSF
hydrolyzate to PF prepolymer was the greatest, followed by that of target density and resin content. The values of MDF
fabricated with RSF-based adhesive resins exceeded those with urea-formaldehyde resins, which is mostly used as a
resin in the manufacture of MDF. Based on the results of MDF per experimental factors, the optimal conditions were
determined to target density of 0.7 g/cm3, resin content of 5% and PF-prepolymer weight ratio of 40 wt% in RSF-based
adhesive resin, and physical properties and formaldehyde emission of the MDF fabricated with the conditions satisfied
the requirements for MDF and E0 grade, which was designated by National Institute of Forest Science, except for
thickness swelling. In conclusion, the potential of RSF-based adhesive for the production of MDF could identify on the
basis of the results of this study. However, the stable securement of RSF through the development of bio-refinery process for
rape plant is required to commercialize RSF-based adhesive resins for MDF production.
References
and Their Polymer Binders,” Polymers 12, 1115(2020).
2. Hussin, M. H., Abd Latif, N. H., Hamidon, T. S., Idris, N. N.,
Hashim, R., Appaturi, J. N., Brosse, N., Ziegler-Devin, I., Chrusiel,
L. and Fatriasari, W., “Latest Advancements in High-performance
Bio-based Wood Adhesives: A Critical Review,” J. Mater.
Res. Technol., 21, 3909-3946(2022).
3. Kuo, M. L., Myers, D. J., Heemstra, H., Curry D., Adams, D. O.
and Stokke, D. D., “Soybean-based Adhesive Resins and Composite
Products Utilizing such Adhesives,” U.S. Patent No.
6,306,997(2001).
4. Yang, I., Kuo, M. L. and Myers, D. J., ”Physical Properties of
Hybrid Poplar Flakeboard Bonded with Alkaline Phenolic Soy
Adhesives,” J. Korean Wood Sci, & Technol., 33(5), 66-75(2005).
5. Yang, I., Kuo, M. L., Myers, D. J. and Pu, A. B., “Comparison
of Protein-based Adhesive Resins for Wood Composites,” J.
Wood Sci., 52(6), 503-508(2006).
6. Christiansen, A. W. and Gillespie, R. H., “Potential of Carbohydrates
for Exterior-type Adhesives,” Forest Prod. J., 36(7/8), 20-
28(1986).
7. Oh, Y., Seller Jr., T., Kim, M. G. and Strickland, R. C., “Evaluation
of Phenol-formaldehyde OSB Resins Modified with Lignin
Residues from Acid-hydrolyzed Waste Newsprint,” Forest
Prod. J. 44(2), 25-29(1994).
8. Yang, K. K., Wang, X. L. and Wang, Y. Z., “Progress Nanocomposite
of Biodegradable Polymer,” J. Ind. Eng. Chem. 13(4),
485-500(2007).
9. Barbosa, A. P., Mano, E. B. and Andrade, C. T., “Tannin-based
Resins Modified to Reduce Wood Adhesive Brittleness,” Forest
Prod. J., 50(9), 89-92(2000).
10. Moubarik, A., Allal, A., Pizzi, A., Charrier, F. and Charrier, B.,
“Characterization of a Formaldehyde-free Cornstarch-tannin Wood
Adhesive for Interior Plywood,” Eur. J. Wood & Wood Prod.,
68(4), 427-433(2010).
11. Oh, S., Ahn, S., Choi, I., Jeong, H., Yoon, Y. and Yang, I., “Development
and Application of Okara-based Adhesives for Plywood
Panels,” Mokchae Konghak 36(3), 30-38(2008).
12. Yang, I., Ahn, S., Choi, I., Kim, H., and Oh, S. C., “Adhesives
Formulated with Chemically Modified Okara and Phenol-resorcinol-
formaldehyde for Bonding Fancy Veneer onto High-Density
Fiberboard,” J. Ind. & Eng. Chem., 15(3), 398-402(2009).
13. Yang, I., Lee, K. and Oh, S., “Manufacture and Performance
Evaluation of Medium-density Fiberboard Made with Coffee
Bean Residue-wood Fiber,” J. Korean Wood Sci. Technol., 41(4),
293-301(2013).
14. Ahn, S., “Effect of Heating Temperature and Time of Coffee
Waste on the Adsorptivity of Formaldehyde,” J. Korean Wood
Sci. Technol., 43(3), 390-399(2015).
15. Yang, I. and Ahn, S., “Investigating the Potential of Human Hair
Produced from the Beauty Parlor and Barbershop as a Raw Material
of Wood Adhesives,” J. Korean Wood Sci. Technol., 45(5), 599-
612(2017).
16. Yang, I., Park, D., Choi, W., Oh, S. C., Ahn, D. and Han, G.,
“Reaction Mechanism and Curing Characteristics of Chicken
Feather-based Adhesives and Adhesive Properties of Mediumdensity
Fiberboard Bonded with the Adhesive Resins,” Korean
Chem. Eng. Res., 55(3), 385-394(2017).
17. Yang, I., Jeong, J., Han, G., Choi, I., Sagong, M., Ahn, S. and Oh,
S. C., “Development of Adhesive Resins Formulated with Rapeseed
Flour Akali Hydrolyzates for Plywood Panels,” Mokchae
Konghak 38(4), 323-332(2010).
18. Yang, I., Han, G., Choi, I., Kim, Y., Ahn, S. and Oh, S. C.,
“Development of Adhesive Resins Formulated with Rapeseed
Flour Hydrolyzates for Laminated Veneer Lumber and Its Performance
Evaluation,” Mokchae Konghak 39(3), 221-229(2011).
19. Yang, I., Han, G., Choi, I., Kim, Y., Ahn, S. and Oh, S. C.,
“Development of Adhesive Resins Formulated with Rapeseed
Flour Hydrolyzates for Medium-density Fiberboard (MDF),” J.
Korean Wood Sci. Technol., 40(3), 177-185(2012).
20. Yang, I., Han, G., Ahn, S., Choi, I., Kim, Y. and Oh, S. C., “Adhesive
Properties of Medium-density Fiberboards Fabricated with
Rapeseed Flour-based Adhesives,” J. of Adhesion 90(4), 279-295
(2014).
21. Shin, S., “Production of Environmentally Friendly Edible Rapeseed
Oil,”(2022) https://www.nics.go.kr/bbs/view.do?m=100000020&bbsId=
news&bbsSn=625892 [Accessed 28 April 2024].
22. Lee, Y. H., “Value of Rapeseed,” (2014) https://www.kyongbuk.
co.kr/news/articleView.html?idxno=673887 [Accessed 28 April
2024].
23. Korean Agency for Technology and Standards, “Fiberboards,”
KATS, KS F 3200, umseong, Chungbuk, Republic of Korea(2021).
24. Korean Agency for Technology and Standards, “Determination
of the Emission Rate of Formaldehyde and Volatile Organic
Compounds in Building Interior Products,” KATS, KS M 1998,
Umseong, Chungbuk, Republic of Korea(2022).
25. National Institute of Forest Science, “Standard and Specification of
Wood Products,” NIFOS, Seoul, Republic of Korea(2020).
26. Tran, A., Konnerth, J., van Herwijnen, H. W. G., and Gindl-Altmutter,
W., “Low Temperature and Moisture Dependent Curing
Behavior of Selected Wood Adhesives,” Int. J. Adhes. Adhes.
117(Part A), 103178(2022).
27. Frihart, C. R. and Hunt, C. G., Wood Adhesives Bond Formation
and Performance: Wood Handbook – Wood as an Engineering
Material, United States Department of Agriculture Forest
Service, Madison, 10-1-10-23(2021).
28. Ferdosian, F., Pan, Z., Gao, G. and Zhao, B., “Bio-Based Adhesives
and Evaluation for Wood Composites Application,” Polymers
9(2), 70(2017).
29. Zhang, C., Wang, Z., Li, Y., Yang, Y., Ju, X. and He, R. “The
Preparation and Physiochemical Characterization of Rapeseed
Protein Hydrolysate-chitosan Composite Films,” Food Chem.,
272, 694-701(2019).
30. Jeong, H., Kim, H., Ahn, S. H., Oh, S. C., Yang, I. and Choi, I.
“Effects of Combination Processes on the Extraction of Pectins
from Rapeseed Cake (Brassica napus L.),” Food Chem., 139, 9-
15(2013).
31. Selakjani, P. P., Dorieh, A., Pizzi, A., Shahavi, M. H., Hasankhah, A.,
Shekarsaraee, S., Ashouri, M., Movahed, S. G. and Abatari, M.
N., “Reducing Free Formaldehyde Emission, Improvement of
Thickness Swelling and Increasing Storage Stability of Novel
Medium Density Fiberboard by Urea-formaldehyde Adhesive Modified
by Phenol Derivatives,” Int. J. Adhes. Adhes., 111, 102962
(2021).
32. Chrobak, J., Iłowska, J., and Chrobok, A., “Formaldehyde-free
Resins for the Wood-Based Panel Industry: Alternatives to Formaldehyde
and Novel Hardeners,” Molecules 27(15), 4862(2022).
33. Ahn, S. Y., “Status of Wood Adhesive Resin in the Domestic
Market,” Personnel Communication (2024) [Accessed 15 April
2024].